
An In-Depth Study of
More Than Ten Years of Java Exploitation

Philipp Holzinger1, Stefan Triller1, Alexandre Bartel2, and Eric Bodden3,4

1Fraunhofer SIT, 2Technische Universität Darmstadt, 3Paderborn University, 4Fraunhofer IEM
1{firstname.lastname}@sit.fraunhofer.de, 2alexandre.bartel@cased.de

3eric.bodden@uni-paderborn.de

ABSTRACT
When created, the Java platform was among the first run-
times designed with security in mind. Yet, numerous Java
versions were shown to contain far-reaching vulnerabilities,
permitting denial-of-service attacks or even worse allowing
intruders to bypass the runtime’s sandbox mechanisms, open-
ing the host system up to many kinds of further attacks.

This paper presents a systematic in-depth study of 87 pub-
licly available Java exploits found in the wild. By collecting,
minimizing and categorizing those exploits, we identify their
commonalities and root causes, with the goal of determining
the weak spots in the Java security architecture and possible
countermeasures.

Our findings reveal that the exploits heavily rely on a
set of nine weaknesses, including unauthorized use of re-
stricted classes and confused deputies in combination with
caller-sensitive methods. We further show that all attack
vectors implemented by the exploits belong to one of three
categories: single-step attacks, restricted-class attacks, and
information hiding attacks.

The analysis allows us to propose ideas for improving the
security architecture to spawn further research in this area.

1. INTRODUCTION
From a security point of view, a virtual machine’s goal is

to contain the execution of code originating from untrusted
sources in such a way that it cannot impede the security
goals of the host machine. For instance, the code should not
be able to access sensitive information to which access has
not been granted, nor should it be able to launch a denial-
of-service attack. Many virtual machines try to contain un-
trusted code through a so-called sandbox model. Concep-
tually, a sandbox runs the untrusted code in a controlled
environment, by separating its execution and its data from
that of trusted code, and by allowing it only to have access
to a limited and well-defined set of system resources.

This paper investigates more than ten years of insecurities
and exploitation of the Java platform, whose security con-

cepts rely heavily on such sandbox model. Conceptually, the
Java Runtime Environment (JRE) uses a sandbox to contain
code whose origin is untrusted in a restricted environment.
When executing a Java applet from an untrusted site within
a browser, its access is controlled. Sandboxed applets are
only allowed to perform a very limited set of tasks such as
making network connections to the host they were loaded
from, or display HTML documents.1 A second use case of
sandboxing in Java is on the server side: application servers
use the sandbox mechanisms to isolate from one another and
from the host systems the applications they serve.

While conceptually easy to grasp, the Java sandbox is ac-
tually anything but a simple box. Instead it comprises one
of the world’s most complex security models in which more
than a dozen dedicated security mechanisms come together
to—hopefully—achieve the desired isolation. To just give
some examples: bytecode verification must prevent invalid
code from coming to execution, access control must correctly
tell apart trusted from untrusted code, and to prevent the
forging of pointers type checking must in all cases properly
distinguish pointer references from numeric values. As a con-
sequence, the “sandbox” is only as good as the joint security
architecture and implementation of all those different mech-
anisms that comprise the sandbox. Adding to that, the code
implementing the sandbox has evolved over far more than a
decade, involving dozens of developers, with virtually none
of the original creators remaining in charge today, and with
the lead maintenance of Java moving from Sun Microsys-
tems to Oracle Inc. When considering all this, it may come
as less of a surprise that over the years the Java runtime
has seen a large number of devastating vulnerabilities and
attacks, most of which lead to a full system compromise: an
attacker would be able to inject and execute any code she de-
sires, at the very least with the operating-system privileges
assigned to the user running the Java virtual machine [7, 8].
Security vulnerabilities are present in different parts of the
complex sandbox mechanism, involving issues such as type
confusion, deserialization issues, trusted method chaining or
confused deputies.

With Java being a runtime deployed on literally billions
of devices, it is one of the most prevalent software systems
in use today. Hence naturally, Java vendors such as Oracle
and IBM are eager to fix vulnerabilities once they become
known. But over the past years, the crafting of exploits by
attackers and the crafting of patches by vendors has become
a continuing arms race. Oftentimes, security patches lit-

1https://docs.oracle.com/javase/tutorial/deployment/
applet/security.html

https://docs.oracle.com/javase/tutorial/deployment/applet/security.html
https://docs.oracle.com/javase/tutorial/deployment/applet/security.html

erally only “patch” the discovered hole without addressing
the actual underlying security problem. In many cases this
has allowed attackers to replace one patched part of an ex-
ploit by another one based on a newly found, similar root
cause of the vulnerability. In other cases, the fragmentation
of the platform caused additional problems. For instance,
the exploit for CVE-2013-5838 impacting Oracle Java 7 up-
date 25 still works with minor modification on Oracle Java
8 update 74 [7]. Similarly, the exploit for CVE-2013-5456
against IBM Java SDK 7.0.0 before SR6, still works with
minor modifications against IBM SDK 7.1 [8]. In result,
it seems as if even the Java vendors have lost track of the
sandbox mechanisms’ original security goals, the interaction
protocols between those mechanisms and how the security
goals of those individual mechanisms and their interactions
are actually meant to be enforced within Java. One of the
goals of this paper is to bring back to light some of that cru-
cial knowledge, by highlighting the inner workings of past
and current exploits and the vulnerabilities and weaknesses
to which they relate.

In this work we thus present an overdue in-depth study
of all publicly available Java exploits we were able to find.
We harvested 87 different exploits from the Internet and re-
duced each of them to a minimal form, retaining only the
code crucial to achieving the goal of the exploit (full bypass,
DoS, etc.). Each exploit was validated to fulfil its goal on the
Java versions it targets. From the minimal representation,
we next manually split every exploit into independent steps
that we call primitives. This allows us to reason about the
different steps an exploit needs to perform to reach the at-
tacker’s goal, at a level higher than the code. By comparing
primitives, we are able to compare and cluster the behavior
of exploits. This clearly points us to weak spots of the Java
platform which are used in many different attacks.

To summarize, this paper makes the following contribu-
tions:

• a collection of 61 working Java exploits, based on a set of
87 original exploits,

• an analysis and categorization of the Java exploits in terms
of intended behavior and primitives,

• an analysis of Java in terms of its weak spots with respect
to security, and

• potential security fixes for those weak spots.

We make the full documentation of the exploit sample set
publicly available along with this paper2.

The remainder of the paper is organized as follows. In
Section 2, we introduce the reader to the basics of the Java
security model. Next, in Section 3, we detail how we col-
lected the set of Java exploits. We describe how we model
the exploits in Section 4 and explain our findings in Sec-
tion 5. Finally, we discuss the related work in Section 6 and
conclude in Section 7.

2. BACKGROUND
In this section, we provide a basic introduction to the Java

security model. Additionally, we will present a number of
features that do not belong to the core implementation of
the security model, but that will be heavily involved in the
discussions of this paper. We limit ourselves to the crucial

2https://github.com/pholzinger/exploitstudy

parts that are required to understand the following exploit
analysis.

2.1 The Java security model
First we will introduce some of the essential mechanisms

of the Java security model. Gong and Ellison provide a more
comprehensive documentation [9].

Classloading.
Before Java applications can be executed, they need to be

loaded into the runtime. For this, the Java platform provides
a set of classloaders. Both the applications and the runtime
itself use these classloaders to dynamically load new code
from various sources, e.g., from the local file system, or net-
work resources. During initialization of the Java runtime,
the Java Virtual Machine (JVM) uses a bootstrap class-
loader to load required parts of the Java Class Library (JCL)
into memory. The JCL contains all the classes that imple-
ment Java’s standard API, such as java.lang.Object, or
java.lang.Class. In the following, we will call such classes
system classes. The JVM loads application classes with an-
other classloader instance, the application classloader. The
process that converts a byte representation of a class into an
instance of java.lang.Class is known as class definition.
Each newly defined class is assigned a protection domain,
which itself is associated with a specific set of permissions.
Classes that were loaded by the bootstrap classloader, in-
cluding all system classes, are trusted classes, and thus as-
sociated with a protection domain that provides all permis-
sions. Application classes are, by default, untrusted and
thus assigned a protection domain with limited permissions.

For security reasons, some parts of the JCL are off limits.
These parts reside in specific packages, known as restricted
packages containing restricted classes. Such classes cannot
be loaded by application classes unless those were explicitly
given permission to do so. Examples for restricted packages
are sun.**, or com.sun.imageio.**. Well-known restricted
classes are sun.misc.Unsafe and sun.awt.SunToolkit. If
an attacker manages to invoke functionality of restricted
packages, this is usually sufficient for a full bypass of all secu-
rity features. We found that the number of restricted pack-
ages increased significantly over time. Java 1.7.0 contained
four restricted packages (not counting subpackages), version
1.7.0u11 contained eight, but the current version 1.8.0u92
contains 47 restricted packages.

Stack-based access control.
The JCL provides sensitive functionality, such as file and

network access. All those features are guarded by a per-
mission check, triggered through a call to SecurityMan-

ager.check*. Permission checks are implemented by means
of stack-based access control. Whenever a check has been
triggered, the runtime will inspect the call stack to check
whether all calling classes are associated with protection
domains that own the requested permission. If any of the
callers does not have permission to use the desired function-
ality, an exception is thrown to deny access to the function-
ality.

There is one way to diverge from this basic algorithm.
By using AccessController.doPrivileged, a system class
can vouch for the fact that the specific way in which the
sensitive functionality is used is safe to be used also by un-
trusted code. Whenever a permission check has been trig-

https://github.com/pholzinger/exploitstudy

gered, stack inspection will stop at the first caller that has
called doPrivileged, and check only permissions of callers
up until there.

Java applications can be run with and without an ac-
tive SecurityManager. If no SecurityManager has been
set, this bypasses all calls to SecurityManager.check*, thus
offering unlimited access to features of the JRE. If, how-
ever, a SecurityManager is in charge, the instance that is
responsible for access control is stored in the private field
java.lang.System.security. Naturally, if an attacker suc-
ceeds in setting this field to null, this results in a full secu-
rity bypass.

Information hiding.
Information hiding, while often not perceived as a security

feature, is in fact crucial to the security of the entire plat-
form. Access to private fields and methods of system classes,
such as java.lang.System.security, allow an attacker to
bypass all security checks. Vulnerabilities that can be used
to circumvent visibility rules are thus highly critical.

Type safety.
Type safety is the last crucial aspect of the Java security

model that we want to highlight. At any time of program
execution, it is important for the runtime to keep track of
the types of objects, and the operations that one may per-
form on them. An attacker can use vulnerabilities to create
type confusion, thus allowing her to perform an action on an
object of type A, while the Java runtime thinks the action
is performed on type B. As an example, the attacker can set
the field CustomClass.security to null, which is not a secu-
rity breach under normal conditions. If, however, Custom-
Class.security is actually java.lang.System.security—
and the JRE will allow this action only because of a type
confusion—an attacker can use this to disable the Securi-

tyManager. This is why type safety is an essential aspect of
the Java security model.

2.2 Special features
The JRE provides a set of features that we consider special

in the context of this analysis because they conceptually
work against the security model.

One of those features is the reflection API. Using reflec-
tion, executed classes can inspect themselves, other classes,
or the call stack, among other things. On the one hand,
this is a valuable feature, which is used to implement, e.g.,
testing frameworks, debuggers, and development environ-
ments [6]. On the other hand, however, reflection can be
used to bypass information hiding. If given permission, a
class can use the reflection API to modify private field val-
ues of other classes, thus violating visibility rules. Certain
system classes use reflection to implement caller-sensitive
methods. Such methods inspect the call stack and vary their
behavior dependend, e.g., on the immediate caller. One of
those methods is Class.forName. It will use the immedi-
ate caller’s classloader to load a specified class. Another
example is Class.getDeclaredMethods, which will skip a
permission check if only the immediate caller is trusted.

A similar feature is the MethodHandles API. Even though
implemented differently, it can also be used to obtain refer-
ences to methods and fields of other classes during runtime.
Consequently, this feature also poses a risk to the secure
implementation of the Java platform.

Finally, we want to highlight deserialization as a risky
feature. Serialization is the process of translating objects,
including their field values, into a storable data format, e.g.,
a byte array. Deserialization is the reverse process of re-
constructing such stored objects in the runtime. One of the
risks involved in this is that attackers can craft arbitrary
serialized objects. A deserialized object may be in a state
that would be impossible to achieve without serialization.
This is risky, because it may give attackers access to objects
they would not normally have access to [17].

The analysis in Section 5 will refer to these features and
provide more details on how they are relevant for Java se-
curity in practice.

3. EXPLOIT SAMPLE SET
We were interested in collecting a large and diverse set

of exploits. To structure our efforts, we followed a multi-
step process. First, we collected exploits from various online
databases and exploit frameworks, including Metasploit (22
exploits)3, Exploit-DB (2)4, Packet Storm (5)5, from the
security research company Security Explorations (52)6, and
an online repository for Java exploits7. Thus we studied
87 exploits in total. The majority of exploits target the
Oracle JDK (64), some the IBM JDK (22) and one is specific
to Apple’s JDK. Most exploits for Oracle’s JDK can also
be run on other vendors’ JDKs, as they involve security
vulnerabilities in the very core of Java. The associated CVE
identifiers, where available, range from 2003 to 2013. We
tagged all original exploits with a unique ID to allow for
easy tracking throughout the analysis.

After our collection process, we tested all exploits in an
isolated environment to verify that the exploits were actu-
ally effective. To do so, we created a common testing frame-
work. For exploits that bypass the Java sandbox model, our
framework sets the SecurityManager to the default Securi-
tyManager, runs the exploit and checks whether the Securi-
tyManager is set to null, afterwards. This allows for testing
all such exploits in a uniform and fully-automated manner.
For exploits that do not aim for disabling the Security-

Manager we tested the effectiveness manually. This includes
all denial-of-service and information-disclosure attacks. We
removed from any further consideration all exploits that we
were unable to run successfully.

Most exploits for the Oracle JDK that we were able to
test successfully run on Java 1.6 or 1.7, few exploits require
Java 1.4 or 1.5. All exploits for the IBM JDK that we were
able to reproduce successfully run on IBM JDK 7.0-0.0 or
7.0-3.0.

Some of the downloaded exploits were hard to read be-
cause they contained large byte arrays with possible pay-
loads. Some of them also contained GUI elements, unnec-
essary reflection constructs, bugs, etc. As a next step, we
thus transformed all exploits that we tested successfully into
minimal exploits. They contain only those lines of code that
are crucial for the exploit to work. Also, as far as possible,

3https://github.com/rapid7/metasploit-framework/tree/
master/external/source/exploits, last accessed 2016-05-20
4https://www.exploit-db.com, last accessed 2016-05-20
5https://packetstormsecurity.com, last accessed 2016-05-20
6http://www.security-explorations.com/en/
SE-2012-01-poc.html, last accessed 2016-05-20
7https://bitbucket.org/bhermann/java-exploit-library, last
accessed 2016-08-03

https://github.com/rapid7/metasploit-framework/tree/master/external/source/exploits
https://github.com/rapid7/metasploit-framework/tree/master/external/source/exploits
https://www.exploit-db.com
https://packetstormsecurity.com
http://www.security-explorations.com/en/SE-2012-01-poc.html
http://www.security-explorations.com/en/SE-2012-01-poc.html
https://bitbucket.org/bhermann/java-exploit-library

1 // Method loads arbitrary classes

2 private Class getClass1(String s) {

3 JmxMBeanServer server =(JmxMBeanServer)

JmxMBeanServer.

4 newMBeanServer("",null ,null ,true);

5 MBeanInstantiator i=server.

getMBeanInstantiator ();

6 return i.findClass(s,(ClassLoader)null);

7 }

Listing 1: Modified excerpt from exploit for CVE-
2013-0431

1 // Method loads arbitrary classes

2 private Class getClass2(String s) {

3 MethodType mt=MethodType.methodType(

Class.class ,String.class);

4 MethodHandles.Lookup l=MethodHandles.

publicLookup ();

5 MethodHandle mh=l.findStatic(Class.class

,"forName",mt);

6 return (Class)mh.invokeWithArguments(new

Object []{s});

7 }

Listing 2: Modified excerpt from exploit for CVE-
2012-5088

we replaced the large byte arrays with the code they con-
tained, creating the byte arrays on demand.8 We did this
reverse engineering to facilitate code reviews.

Finally, we compared all sources that we acquired manu-
ally and merged those that were semantically equivalent. At
the end of this process, we ended up with 61 unique, working
exploits that we used as a basis for the analysis.

4. MODELING EXPLOIT BEHAVIOR

4.1 Exploit behavior
The goal of this work is to understand how attackers ex-

ploit the Java platform, and to identify measures of improve-
ment by analyzing the behavior of a large body of exploit
samples. The first essential question that needs to be dis-
cussed is the definition of behavior that will be used through-
out this analysis.

Instead of providing an abstract, formal definition of the
term, let us consider Listings 1 and 2. Both listings contain
one method each, getClass1 and getClass2, both of which
are able to dynamically load a class. Since they make use
of security vulnerabilities, an exploit can use them to load
arbitrary classes, including restricted ones. As explained
in Section 2, this poses a security risk, as restricted classes
may provide functionality that can be used to disable se-
curity checks. While getClass1 and getClass2 implement
the exact same functionality, they use different implementa-
tions to achieve their goal; getClass1 uses classes JmxM-

BeanServer and MBeanInstantiator, and getClass2 de-

8In some cases, however, this was not possible because the
very nature of the exploit was to work with bytecodes that
cannot be produced from source.

pends on MethodHandle instead. If some developer were
to document the behavior of any of these methods, one in-
tuitive way would be to add a code comment similar to the
one in line 1 of Listing 1 and 2, respectively. It simply states
that they can be used to load arbitrary classes. This is on
the right level of abstraction for another developer to un-
derstand the purpose of the methods, that they implement
the same functionality and that they can thus be used in-
terchangeably. This is also the right level of abstraction for
describing the behavior of exploits in the sample set, such
that it allows for identifying common attack patterns and
frequently abused weak points in the Java platform. For
instance, if the analysis revealed that every single exploit
in the entire sample set uses vulnerabilities to dynamically
load arbitrary classes, this could be seen as a clear indica-
tion that the measures implemented to prevent the loading
of restricted classes by untrusted code are fragile and insuf-
ficient. This is the kind of evidence-based conclusion this
exploit analysis is aiming for. Details about how the ex-
ploits implement this functionality are not required to draw
this conclusion. However, these implementation details can
help in understanding why existing countermeasures fail and
may influence the development of new countermeasures.

The behavior of an entire exploit that disables all security
checks is more complex than the code examples provided
in the listings. Functionality to load arbitrary classes could
be one building block of such an exploit, but a complete
description of a full-bypass exploit typically requires more
than one building block to adequately model its behavior on
this level of abstraction. Further, note that the two code
snippets shown rely on different vulnerabilities. Another
purpose of identifying snippets with the same behavior is
thus to see whether one could be replaced by another, e.g.,
when the vulnerability exploited in the first was fixed but
not the one exploited by the second.

4.2 A meta model to document exploits
For purposes of this exploit analysis, we developed a new

meta model that we used as a basis for documenting the
exploits in the sample set. Creating this model was guided
by the following requirements.

• The meta model should focus on behavior (as defined in-
formally in 4.1) and abstract from implementation, i.e.,
specific bug details. Only with this layer of abstraction is
it possible to identify commonalities between the different
exploits, as many of them use entirely different implemen-
tations.

• Our definition of behavior is at a rather low level of ab-
straction. The model must thus allow for documenting
behavior in terms of reusable building blocks, which can
be combined to model complete attacks.

• The analysis shall not only focus on how exploits abuse
vulnerabilities, but also on how they make use of spe-
cific features of the Java platform to achieve their goal.
The model must thus allow for documenting the use of in-
tended functionality, such as the reflection API, or Method-
Handles.

Guided by the above requirements, we developed a new
meta model that we instantiated to document all exploits
in the sample set. As can be seen in Figure 1, this model
comprises the following seven entities:

Attack
vector

Final
goal

Primitive
Helper

primitive
Attacker
primitive

Implemen-
tation

Exploit achieves

is part of

is a is a

imple-
ments

imple-
ments

imple-
ments

Figure 1: Meta model used to document exploits.

Final goal. This is the most abstract entity in the meta
model. It is used to describe the final goal of an entire
attack by means of a brief textual description. Final goals
express the way in which an attack vector is considered to
be malicious. One final goal can be achieved through one or
more attack vectors, but each attack vector achieves only
one final goal. More than one final goal may be needed
to document an entire set of exploits, as different exploits
may implement different attack vectors.
Example: Information disclosure, denial of service.

Attack vector. An attack vector is one way to achieve a
specific final goal. It is composed of one or more primitives.
Two attack vectors are similar, if they are composed of the
same set of primitives.

Primitive. A primitive is a building block of a vector that
describes specific behavior. Primitives are more abstract
than implementations, but less abstract than vectors. All
primitives describe behavior at the same level of abstrac-
tion. Each primitive can be used as a building block for
more than one vector. There are two kinds of primitives:
helper primitives, and attacker primitives. All primitives
are documented by a set of properties, including a title, a
unique ID, a textual description, preconditions, etc. Each
primitive is instantiated by at least one implementation.

Attacker primitive. An attacker primitive is one specific
kind of primitive that describes behavior that was intro-
duced through a security vulnerability. It violates the se-
curity model of the target system, which must be properly
documented in its description. Each attack vector must be
composed of at least one attacker primitive.
Example: Load arbitrary classes.

Helper primitive. A helper primitive is, besides attacker
primitives, another specific kind of primitive. It describes
behavior that was introduced as a feature of the target
system, as opposed to attacker primitives, which were in-
troduced unintentionally. Each helper primitive is a coun-
terpart to at least one attacker primitive, in the sense that
the corresponding attacker primitives would be useless, or
at least less useful without the helper primitive. A helper
primitive’s description must explain how it is adding value
to attacker primitives. Helper primitives are optional ele-
ments of attack vectors, as not all attacker primitives rely
on helper primitives.
Example: Set of restricted classes that set a specified field
accessible.

Implementation. Implementations are specific code se-
quences or APIs that instantiate primitives. As such, they
are at the lowest level of abstraction in the meta model.
Each implementatation instantiates only one primitive, but
a primitive can have multiple implementations.
Example: The codes in Listing 1 and Listing 2 are two im-
plementations for the primitive “load arbitrary classes”.

Exploit. An exploit is a concrete instance of an attack
vector. It represents an executable combination of imple-
mentations for the specific primitives of the attack vector.
Every exploit implements a single attack vector, but two
or more exploits can implement the same attack vector, us-
ing different implementations. As an example, one exploit
makes use of the code of Listing 1, and another exploit
uses the code of Listing 2 instead. If this is the only dif-
ference between those two exploits, we consider them to be
different exploits that implement the same vector.

The meta model, as described above, is by no means spe-
cific to Java exploits. In fact, it is generalizable enough to
be applied in entirely different attack domains.

4.3 Documenting the exploit sample set
The basis of our analysis is the set of minimal exploits that

we integrated into our common testing framework. Each
minimal exploit is based on at least one original exploit that
we obtained online. All minimal exploits are different in the
sense that they either implement different vectors, or they
implement the same vectors using different vulnerabilities or
features. Since all exploits in this sample set are tested and
unique, our analysis only considers reproducible attacks, we
avoid duplicates, and we document only the minimal code
that is actually needed to carry out an attack.

Documenting the sample set for our analysis requires us
to instantiate the meta model. This means, we have to de-
velop a set of final goals, primitives, attack vectors, etc. that
closely resemble the behavior of the actual exploits. The
meta model we developed just describes how to descriptively
document exploit behavior, it does not provide any guidance
or a process that needs to be followed in order to instantiate
the model based upon source code. For this, as we elabo-
rate in the following, we chose an iterative approach with
redundant supervision.

The first step of this effort is to identify final goals. This
is a reasonable way to start the documentation process, as
final goals describe exploit behavior at the highest level of
abstraction and their identification requires little knowledge
about implementation details. After reviewing the entire
sample set, we found that a variation of the classic CIA
triad [13] appropriately reflects the attack goals:

• Information disclosure (3 exploits). There are exploits in
the sample set that reveal sensitive information about the
target system, thus violating confidentiality.

• Full bypass (56 exploits). The largest portion of exploits
in the sample set aims for arbitrary code execution, often
achieved through disabling the active security manager.

• Denial of service (2 exploits). Few exploits attack the
availability of the target system, without achieving infor-
mation disclosure or arbitrary code execution.

The second step of describing exploit behavior is to docu-
ment for each exploit the set of primitives it uses to achieve

its final goal. For this, we properly inspected all exploits
in detail to understand which vulnerabilities and features
they use to perform the attacks. This step required multi-
ple iterations to ensure that all primitives we describe are
on the same level of abstraction. It is obvious that there is a
certain design space when it comes to choosing appropriate
primitives to model exploit behavior. Those primitives are
not given, and there is no ground truth. However, the spec-
ification of new primitives was not done arbitrarily, but, as
we explain in the following, supported by guidance.

The specification of new attacker primitives was triggered
by the security vulnerabilities the exploits use. Each secu-
rity vulnerability, by definition, violates the security model.
Different vulnerabilities may violate the model in the same
way or in different ways; they could depend on different pre-
requisites or cause different postconditions. All those char-
acteristics are part of a primitive’s description. For each vul-
nerability, we evaluated whether there is an already existing
attacker primitive with a matching description. If this was
not the case, we either specified an entirely new primitive,
or we adapted the closest match in the set of primitives.

The specification of new helper primitives was guided dif-
ferently. As opposed to attacker primitives, those are not as-
sociated with vulnerabilities, i.e., unintended behavior, but
rather with intended behavior, i.e., features. The Java plat-
form is feature-rich, and implementing even just simple ap-
plications requires heavy usage of the JCL. However, not all
parts of the class library used by exploits are of interest from
a security point-of-view. To select relevant features, we con-
sulted the list already presented in Section 2. Those are the
features that either implement the Java security model, or
pose a risk to the proper implementation of the model. We
assume that those parts of the class library are more likely
to point to design weaknesses.

At any stage of developing the model we applied redun-
dant supervision: the specification of final goals and prim-
itives, and the documentation of all exploits has been as-
sessed by three analysts. Any misunderstandings or dis-
agreements were resolved in group discussions. The result
of our documentation efforts is a set of three final goals,
27 attacker primitives, and ten helper primitives. Table 1
provides an overview of all primitives used for exploit docu-
mentation. Each exploit is associated with an attack vector,
composed of one or more primitives, each of which is in-
stantiated by one implementation. This documentation is
the basis for the analysis and conclusions in Section 5. We
make the full documentation publicly available along with
this paper9.

5. ANALYSIS AND FINDINGS
In the following we use the extensive documentation of the

61 minimal exploits to provide insight into how attackers use
specific vulnerabilities and features of the Java platform to
implement their attacks. Due to the complexities involved
in exploit implementations, we cannot provide a detailed
view on the exploits’ behavior on the level of primitives, as
this would clearly exceed any space restrictions. Instead,
we derived a smaller set of higher-level weaknesses from the
primitives that we used to document the exploits, as well as
their implementation details. Based on this, we will discuss
the following research questions.

9https://github.com/pholzinger/exploitstudy

ID Title

H1 Load arbitrary classes if caller is privileged

H2 Lookup MethodHandle

H3 Get access to declared methods of a class if caller
is privileged

H4 Get access to declared field of a class if caller is
privileged

H5 Get access to declared constructors of a class if
caller is privileged

H6 Set of restricted classes that define a user-provided
class in a privileged context

H7 Set of restricted classes that set a specified field
accessible

H8 Set of restricted classes that provide access to de-
clared fields of non-restricted classes

H9 Use confused deputy to lookup MethodHandle

H10 Private PrivilegedAction that provides access to
arbitrary no-argument methods and sets them ac-
cessible

A1 Access to system properties

A2 Load arbitrary classes

A3 Load restricted class

A4 Call arbitrary public methods

A5 Access to arbitrary public method

A6 Access to MethodHandles for arbitrary protected
methods

A7 Use system class to call arbitrary MethodHandles

A8 Get access to declared method of a class

A9 Get access to declared field of a class and set it
accessible

A10 Get access to declared, non-static fields of a serial-
izable class and set them accessible

A11 Read and write value of an arbitrary non-static
field

A12 Get access to declared method of a class and set it
accessible

A13 Get access to public constructors of a class

A14 Define class in a privileged context

A15 Set arbitrary members accessible

A16 Restricted field manipulation

A17 Use system class to call arbitrary static methods

A18 Call arbitrary method in privileged context

A19 Call arbitrary instance method in privileged con-
text

A20 Use system class to call arbitrary methods

A21 Use a system class to call a subset of methods

A22 Instantiate arbitrary objects

A23 Instantiate a subset of restricted classes

A24 Create very large file

A25 Call arbitrary method in trusted method chain

A26 Access to MethodHandle of constructor of private
inner class

A27 Unlimited nesting of Object arrays

Table 1: Overview of the primitives used for exploit
documentation. Helper primitives have an identifier
starting with H, attacker primitives start with A.

https://github.com/pholzinger/exploitstudy

Weakness # exploits

Unauthorized use of restricted classes (W5) 32 (52%)

Loading of arbitrary classes (W4) 31 (51%)

Unauth. definition of privil. classes (W6) 31 (51%)

Reflective access to methods and fields (W8) 28 (45%)

Confused deputies (W2) 22 (36%)

Caller sensitivity (W1) 22 (36%)

MethodHandles (W9) 21 (34%)

Serialization and type confusion (W7) 9 (15%)

Privileged code execution (W3) 7 (11%)

Table 2: Overview of the weaknesses we identified
and the number of minimal exploits that use them.
One exploit can use more than one weakness.

RQ1: What are the weaknesses attackers exploit to imple-
ment their attacks?

RQ2: How do attackers combine the weaknesses to attack
vectors?

While RQ1 discusses the weaknesses that exploits abuse
in isolation, RQ2 is dedicated to an analysis of how attack
vectors combine multiple weaknesses.

5.1 RQ1: What are the weaknesses attackers
exploit to implement their attacks?

As can be seen in Table 2, we derived a set of nine weak-
nesses from the full documentation of the 61 minimal ex-
ploits. All weaknesses represent a specific kind of vulnerabil-
ity or functionality used by at least 10% of all exploits. They
are well-suited for providing an overview as they combine
multiple related primitives and implementations. Note that
some primitives are associated with more than one weak-
ness, and that one exploit can make use of more than one
weakness. In the following, we explain in detail how exploits
make use of the nine weaknesses.

W1: Caller sensitivity.
Related primitives: H1, H3, H4, H5
Caller-sensitive methods vary their behavior depending on
their immediate caller, e.g., skip permission checks if only
the immediate caller is trusted. Such methods are abused
by 22 minimal exploits for the following purposes.

• 22 exploits use methods, primarily Class.forName, to load
arbitrary classes.

• 13 of the former 22 exploits also use caller-sensitive meth-
ods to get reflective access to members of classes, i.e.,
fields, methods, and constructors, they should not be al-
lowed to access.

Caller-sensitive methods are not vulnerabilities by them-
selves, as their behavior is intended. They can only be
abused by malicious code if called through a confused deputy.
Because of this, we modelled all caller-sensitive behavior
abused by exploits as helper primitives. Even though the ac-
tual vulnerabilities are the confused deputies, caller-sensitive
methods significantly increase the attack surface; without
these methods, many confused-deputies that do not explic-
itly elevate privileges would not have to be considered secu-
rity vulnerabilities.

1 Class A {

2 public Object invoke(Method m,Object []

args) {

3 return m.invoke(this ,args);

4 }

5 // ...

6 }

Listing 3: Simplified example code to illustrate a
confused-deputy vulnerability

In addition to the fact that caller-sensitivity increases
the attack surface, we also consider the entire concept of
caller-sensitivity as counter-intuitive when applied to secu-
rity checks. After all, it grants privileges to callers implicitly,
without those callers being aware of those privileges. An
empirical evaluation of the implications of caller-sensitive
methods on security and API usability is certainly required,
however, we are unaware of published research in this area.

W2: Confused deputies.
Related primitives: A7, A17, A20, A21
Confused deputies that are part of the JCL can be used
by attackers to invoke caller-sensitive methods. Calling a
method through a confused deputy will not allow for bypass-
ing arbitrary permission checks, as it will not elevate priv-
ileges. However, caller-sensitive methods often behave dif-
ferently depending only on the immediate caller, sometimes
even skipping permission checks if the immediate caller is
trusted. Thus, calling certain methods through a system
class can be profitable to an attacker. Out of the 61 min-
imal codes, 22 exploits make use of confused deputies. As
we elaborate in the following, the underlying vulnerabilities
are caused by different issues. Note that some exploits make
use of more than only one confused deputy.

• Ten exploits abuse a confused deputy that allows for call-
ing arbitrary static methods. In nine cases, the vulnerabil-
ity was caused by a trusted class implementing a method
similar to the code in Listing 3. In this example, method
A.invoke receives a Method object by the caller, as well
as call arguments, and then invokes that method using
Method.invoke. The first argument to Method.invoke is
the instance upon which to perform the call. In this ex-
ample, it is always this, i.e., an instance of class A. The
second argument is an array of arguments. Just by re-
viewing this method, it seems impossible for any caller to
use A.invoke to invoke a method outside of class A, as the
first argument to Method.invoke is always this, pointing
to an instance of A. However, this is only true for instance
methods, but not for static methods. If Method.invoke

is called on a static method, the first argument will be
ignored. Attackers can thus use a class like A as a con-
fused deputy to call arbitrary static methods (including
those of restricted classes). We should consider the im-
plementation of Method.invoke as the actual root cause
of these vulnerabilities, as ignoring arguments is counter-
intuitive and bad style. There are various ways on how to
implement this such as to avoid usability issues.

• Four exploits abuse a defect in the implementation of
MethodHandles. An example for this is presented in List-

ing 2. Untrusted code can use MethodHandle.invoke-

WithArguments as a wrapper to MethodHandle.invoke-

Exact, which will then call the target method. The prob-
lem with this is that caller-sensitive methods invoked this
way will incorrectly determine MethodHandles.invoke-

WithArguments as the immediate caller, instead of the un-
trusted code that actually called invokeWithArguments.
Since invokeWithArguments is declared in a trusted class,
many caller-sensitive methods will skip a permission check
and thus expose sensitive functionality to malicious code.
This problem illustrates how error-prone caller-sensitive
behavior is in practice. Determining the immediate caller
is by no means a trivial lookup on the call stack. The
Java runtime has to skip certain methods of the reflection
API and MethodHandles on the call stack to ensure that
caller-sensitive methods called this way behave exactly as
they would if called immediately.

• Ten exploits abuse confused deputies that were introduced
by various complex vulnerabilities, which only allow for
calling a subset of all methods.

W3: Privileged code execution.
Related primitives: A18, A19, A25
We differentiate between privileged code execution and other
confused deputies. The confused deputies we referred to in
the previous paragraphs allowed untrusted code to route a
call sequence through a system class, such that the immedi-
ate caller of the actual target method would be the trusted
system class, and not the malicious code that triggered the
call sequence. This allows an attacker to profit from caller-
sensitive methods. In contrast, privileged code execution
refers to vulnerabilities that allow an attacker to execute
code in a way that it successfully passes arbitrary permis-
sion checks. This is thus more powerful than the confused-
deputy vulnerabilities we described before, as they are not
dependend on caller-sensitivity.

There are two different ways how exploits achieve privi-
leged code execution:

• Four exploits abuse system classes, that explicitly elevate
privileges, and then call attacker-provided methods with
arbitrary arguments. These vulnerabilities are specific to
the IBM Java platform. Since privilege elevation is done
explicitly, and the implementation of these vulnerabilities
is rather simple, we assume that static analysis can be
used to find instances of this problem.

• Three exploits make use of more complex vulnerabilities to
achieve what is known as trusted method chaining [1]. In
trusted method chaining, malicious code is able to setup a
thread that will eventually execute code that was provided
by the attacker, in such a way, that the malicious code it-
self is not on the call stack. This is possible through, e.g.,
attacker-provided scripts that will be evaluated dynami-
cally by a trusted class. Because the entire call stack of
the running thread only contains trusted system classes,
all permission checks will succeed. A simple proposal to
address this issue systematically is adding the class that
initiates a thread to the beginning of the newly created
thread’s call stack. Whether this is feasible without any
unwanted side effects needs to be properly evaluated.

As can be seen from the numbers above, cases of explicit
privileged escalation are rare. While there are only four ex-
ploits in the sample set that abuse vulnerabilities of this
kind, there are more than 20 exploits that abuse confused
deputies caused by the implicit elevation of privilege. This is
indicating that explicit privilege elevation is easier to control
than implicit privilege elevation, however, thorough empiri-
cal studies are needed to investigate this matter further.

W4: Loading of arbitrary classes.
Related primitives: H1, A2, A3, A22, A23
Dynamic classloading is a central security-related feature of
the Java platform. Classloaders in the JCL are supposed
to ensure that all code is only able to load classes that it is
allowed to access. Yet, we find that 31 out of 61 minimal
exploits are able to load classes they should be incapable of
loading.

Most commonly (20 exploits), malicious code abuses a
system class as a confused deputy to invoke a caller-sensitive
method, e.g., Class.forName(String), which will use the
immediate caller’s defining classloader to load the requested
class. Since in this setting the immediate caller of forName

is a trusted system class, and its defining classloader is the
almighty bootstrap classloader, untrusted code can request
the loading of arbitrary restricted classes. Listing 2 gives an
example. We modeled the various confused-deputy defects
as instances of attacker primitives, and the corresponding
caller-sensitive methods as a helper primitive.

The remaining eleven exploits abuse other security vul-
nerabilities to load or instantiate classes that should be in-
accessible to them. We reviewed those vulnerabilities and
found that the underlying defects are rather diverse. An
example for this is provided in Listing 1. In this example,
the vulnerability is in a trusted class, MBeanInstantiator,
which simply provides an unrestricted public interface for
loading arbitrary classes. In another case, a complex call
sequence will allow untrusted code to define a custom class
using a special classloader. This special classloader will not
define the class in a privileged context, however, the class-
loader itself allows for loading arbitrary classes. A custom
class, that has been defined this way, can thus simply call
Class.forName, which will use the caller’s defining class-
loader, to load arbitrary classes.

The evaluation of these 31 exploits highlights confused-
deputy defects in combination with caller-sensitivity as a
major issue. There is no inherent reason for why public in-
terfaces for classloading should be caller-sensitive. Remov-
ing them is possible, especially since there are non-caller-
sensitive alternatives, e.g., Class.forName(String, bool-

ean, ClassLoader). While their immediate removal would
break backward compatibility, one should consider their dep-
recation. The remaining vulnerabilities that allow for arbi-
trary classloading are too diverse to be addressed by a single
solution. To fix them, a major redesign of the classloading
mechanism would be required.

W5: Unauthorized use of restricted classes.
Related primitives: H6, H7, H8, A23
Access to restricted classes greatly contributes to the inse-
curity of the Java platform. In total, 32 out of 61 minimal
exploits make immediate use of at least one restricted class.
Exploits in the sample set use them for one or more of the
following purposes:

• Defining a custom class in a privileged context (used by
22 exploits). This is highly valuable to an attacker, as
it allows for arbitrary code execution. A custom class de-
fined in this way can disable the security manager without
having to bypass any further security checks.

• Accessing fields of non-restricted classes (used by three ex-
ploits). Access to private or protected methods of system
classes violates information hiding and exposes sensitive
functionality to untrusted code.

• Setting specific fields accessible (used by nine exploits).
There are certain vulnerabilities that will provide access
to declared members of a class. However, for untrusted
code to be able to use private fields and methods obtained
this way, they must first be set accessible.

• One exploit is able to instantiate a subset of restricted
classes that can be used for information disclosure.

Note that this does not even include the uses of sun.awt.Sun-
Toolkit, which we treated differently from all the other
restricted classes. While we generally consider primitives
that involve the use of a restricted class as helper primi-
tives, we consider primitives that involve SunToolkit as at-
tacker primitives. The difference is that restricted classes
other than SunToolkit cannot be accessed by untrusted
code without exploiting a security vulnerability, whereas it
was always possible to access SunToolkit without violating
the security model: there is a publicly accessible field of type
java.awt.Toolkit, which is instantiated with a platform-
specific toolkit that in turn extends sun.awt.SunToolkit.
Using Class.getSuperClass then provides access to Sun-

Toolkit.
Instead of using stack inspection, restricted classes are

protected in a capability-based manner. Whenever untrusted
code gets a hold of an instance of a restricted class, it can
use it without having to bypass any further checks. The
heavy usage of restricted classes in the exploit sample set il-
lustrates that this entire concept is very hard to implement
securely. The fact that the number of restricted classes in-
creased significantly over time is a dangerous trend. Even
though the case of SunToolkit is exceptional, it once again
demonstrates how hard it is to protect all instances of re-
stricted classes from being leaked to untrusted code. This is
clearly a major design issue that complicates maintainance
of the Java platform and weakens its security guarantees in
practice. Ideally, the concept of restricted classes and the
capability-based way of protecting them would be dropped
in favor of proper permission checks. A potential alterna-
tive way of dealing with this problem could be the planned
Java Module System [2], which may provide more effective
ways of preventing untrusted code from using certain sensi-
tive functionality. However, the Java Module System is still
under development, and requires extensive security analyses
before it can be considered a solution to the problem we
describe.

W6: Unauthorized definition of privileged classes.
Related primitives: H6, A6, A14
Defining a class in a protection domain that is associated
with all permissions allows for arbitrary code execution.
This is achieved by 31 out of 61 minimal exploits, using
one of the following three ways.

• 22 exploits use a set of restricted classes to define a custom
class with all privileges. This obviously requires an attack
vector that abuses vulnerabilities to get access to methods
in restricted classes in the first place. Restricted classes
should be changed such that they only define privileged
classes if absolutely needed. Further, such sensitive meth-
ods should be guarded by a proper permission check. It
may be possible to implement these changes even without
breaking backward compatibility, however, this requires
further investigation.

• Two exploits obtain unauthorized access to MethodHan-

dles for arbitrary protected methods. This can be used
to call internal methods of classloaders immediately, thus
bypassing any security checks implemented in publicly ac-
cessible methods.

• Seven exploits abuse other, more complex vulnerabilities
to immediately define custom classes with all permissions.

W7: Serialization issues and type confusion.
Related primitives: A3, A11, A14, A16
Nine minimal exploits make use of either serialization issues,
type confusion, or a combination of the two. As we explain
in the following, the effects of using such vulnerabilities can
be very different.

• Five of the nine exploits make use of serialization issues.
Two of them use a deserialization sequence to instantiate
a custom classloader, which can be used to define a class
with higher privileges. Another exploit uses deserializa-
tion within a custom thread, to have a restricted class be
loaded by the bootstrap classloader.

Two exploits use serialization issues to bypass information
hiding, but in different ways. One of the two exploits, in-
volving CVE-2013-1489, prepares an instance of a system
class in a way that would be impossible when running with
limited privileges. Specifically, it manipulates the value of
a certain private field of that system class, which holds a
bytecode representation of a class that will later be defined
by triggering a specific call sequence. This is profitable,
because the system class will define this custom class in a
namespace that provides access to restricted classes. An
attacker would prepare the instance of that system class
before the actual attack. When the exploit code is to be
deployed, it only contains the serialized object. Deserial-
ization of the manipulated instance is possible even when
running with limited privileges.

The second exploit that uses serialization to bypass infor-
mation hiding uses a custom output stream to leak de-
clared fields of serializable classes, while their instances
are about to be written. This allows for manipulating
private fields of system classes.

• Two exploits use type-confusion vulnerabilities to confuse
a system class with a spoofed class, e.g., AccessControl-
Context and FakeAccessControlContext, to bypass in-
formation hiding. The spoofed class declares similar fields
as the system class, but it uses public modifiers for fields
that are declared as private fields in the system class. Due
to the type confusion, the system will allow untrusted code
to access fields that are actually private.

• Two exploits combine serialization and type confusion to
implement an attack. One of them uses serialization for
similar purposes as the exploit involving CVE-2013-1489.
As explained above, it modifies private fields of a system
class before the actual attack and then only deploys the
serialized object, which can be deserialized by untrusted
code at any time, even though its running with limited
privileges. Next, it uses this system class to confuse a
spoofed classloader with the application classloader, in
order to be able to define a privileged class. The other
exploit uses a custom input stream to perform type con-
fusion during deserialization. As already explained above,
it also uses this to confuse a spoofed class with a system
class, which both declare the same fields, but with differ-
ent visibility modifiers. By this, the exploit gets access to
private fields of system classes.

W8: Reflective access to methods and fields.
Related primitives: H3, H4, H5, H7, H8, H10, A5,
A8, A9, A10, A12, A13, A15
Improper uses of reflection in system classes, and certain
caller-sensitive methods can be used by malicious code to
bypass information hiding. In total, 28 minimal exploits
achieve this by abusing various different vulnerabilities and
helpers.

• 16 exploits use a vulnerability that will not only provide
untrusted code access to declared fields or methods of a
class, but also set them accessible. This is very valuable to
an attacker, as it allows for using private members without
requiring another vulnerability. Frequently used defects of
this kind were found in sun.awt.SunToolkit.

• 13 exploits use confused deputies to invoke caller-sensitive
methods, such as getDeclaredFields and getDeclared-

Methods in java.lang.Class.

• Twelve exploits abuse restricted classes to access class
members they should not be allowed to access, or set cer-
tain fields accessible.

• 13 exploits make use of other issues to access members.

The fact that so many exploits make use of reflection to
circumvent information hiding clearly shows that a reflection
API is hard to implement securely. At this time, we cannot
present a solution to the manifold issues without a significant
redesign that would break backward compatibility.

W9: MethodHandles.
Related primitives: H2, H9, A6, A26
Similar to the reflection API, MethodHandles can be used
to bypass information hiding. While there are certain com-
monalities, there are also interesting differences, as we show
in the following.

• Twelve vulnerabilities abuse a confused deputy to call
MethodHandles.lookup to get a lookup object on behalf of
a system class. Such a lookup object can be used by ma-
licious code to access members that are accessible to the
system class, but that should be inaccessible to untrusted
code. Due to the capability-based design, malicious code
does not have to bypass any security checks to get ac-
cess to class members after the lookup object has been
retrieved from the confused deputy.

Exploit JRE

Single-step
attack

Restricted
class attack

Information
hiding attack

Load
class

Access
methods

Use class

Confused
deputy

Caller-
sensitive
method

Dedicated
vulnerability

Dedicated
vulnerability

&

&

Confused
deputy

Caller-
sensitive
method

&

Figure 2: Shortened attack tree that illustrates the
three categories of attack vectors we identified.

• Without using any security vulnerabilities, eight exploits
make regular use of MethodHandles.lookup, or Method-

Handles.publicLookup to access members. In most cases,
this is simply done because other vulnerabilities depend on
MethodHandles, as illustrated in Listing 2. In other cases,
however, MethodHandles has been deliberately used as an
alternative to the reflection API, because MethodHandles

can be less strict when it comes to type checking. This is
important for a few rare cases of type confusion. During
testing, we found that using the reflection API to access
members of a confused type resulted in an exception due
to a type mismatch, while using MethodHandles worked
without any errors. While this flexibility of MethodHan-

dles is advertised as a feature, it is also helpful to attack-
ers.

• Three exploits use other vulnerabilities that will provide
untrusted code access to MethodHandles that should be
inaccessible.

5.2 RQ2: How do attackers combine the weak-
nesses to attack vectors?

The entire set of 61 minimal codes implements 33 differ-
ent attack vectors. As explained in Section 4.2, a vector
is a specific combination of primitives. Each primitive is
implemented by specific code sequences, which we call im-
plementations. The total number of vectors is smaller than
the total number of exploits, because two exploits can im-
plement the same vector, i.e., the same set of primitives, but
using differerent implementations.

We evaluated how exploits combine the different primi-
tives to attack vectors and found that there are three dif-
ferent categories of attacks. As illustrated in the attack
tree [16] in Figure 2, these categories are single-step attacks,
restricted-class attacks, and information-hiding attacks. In
the following, we will describe each category in detail.

The category of single-step attacks comprises 13 of the 33
vectors, implemented by 28 minimal exploits. These vectors
have in common that they are of length one and comprise
only a single attacker primitive that can be used alone to
achieve the final goal. In one exceptional case the exploit
uses an additional helper primitive. All five exploits that
achieve denial of service or information disclosure belong to
this category, as well as the seven exploits that achieve priv-
ileged code execution. Another seven exploits use security
vulnerabilities to immediately define a custom class with

higher privileges, thus achieving full bypass without relying
on any other vulnerabilities. Six exploits perform unautho-
rized manipulation of field values, which can be used alone
for privilege escalation. The remaining two exploits use vul-
nerabilities to get access to MethodHandles for arbitrary pro-
tected methods. These single-step attacks are hard to miti-
gate systematically, as they exploit individual vulnerabilities
of various types in different components.

The category of restricted-class attacks comprises 18 vec-
tors, implemented by 31 exploits. They all make imme-
diate use of a restricted class and combine multiple prim-
itives to achieve a final goal. As illustrated in Figure 2,
most of them comprise three common steps: (a) load re-
stricted class, (b) get access to methods of that restricted
class, (c) use the restricted class by calling its methods.
We found that eleven of those 18 vectors, implemented by
22 exploits, use a combination of a confused deputy and a
caller-sensitive method to achieve step (a) or (b). Conse-
quently, modifying or replacing caller-sensitive methods like
Class.forName(String), Class.getDeclaredMethods, and
Class.getDeclaredFields would render 22 out of 61 ex-
ploits infeasible.

In principle, acquiring instances of restricted classes does
not require immediate use of a classloading API, or a confused-
deputy vulnerability. A possible alternative way to get ac-
cess to a restricted class is by retrieving it from a trusted
class, either because it leaks an instance through a public
interface, or because it holds an instance in a private/pro-
tected field, which can be accessed from untrusted code by
means of another vulnerability. An example for such an at-
tack is the exploit that involves CVE-2012-1726. It first uses
a vulnerability to break information hiding, thus getting ac-
cess to private methods. Then, it uses a private method,
Thread.start0, to start a custom thread in such a way that
this thread can retrieve an instance of SunTookit using de-
serialization. SunToolkit is then used to access the contents
of a private field in a system class, AtomicBoolean.unsafe,
which holds an instance of sun.misc.Unsafe. Finally, Un-
safe is used to define a class in a privileged context. As can
be seen, this vector does not involve the immediate use of a
classloader or a confused deputy. However, we find that this
is a rare case. Only four exploits that use restricted classes
implement a vector that does not depend on classloading
vulnerabilities or confused deputies.

The third category, information hiding attacks, is the small-
est category and comprises the remaining two vectors, each
implemented by a single exploit. They have in common,
that they both abuse vulnerabilities to break information
hiding. One of the two exploits combines two different vul-
nerabilities to achieve this. One is used to get access to
declared fields of a class, and the other one to set them ac-
cessible. It uses this capability to set the private field Sys-

tem.security to null, thus disabling all security checks.
The second exploit combines a vulnerability for loading ar-
bitrary classes, with a vulnerability to call arbitrary pub-
lic methods. To implement a full attack, it first creates
an instance of java.beans.Statement, which targets Sys-

tem.setSecurityManager with a null argument. This alone
does not violate the security model and cannot be used
by untrusted code without causing an exception, because
Statement will use the current AccessControlContext to
perform the call, which does not have permission to disable
the security manager. To make use of this statement, the

exploit first uses the vulnerability that allows for loading ar-
bitrary classes to load SunToolkit. It then uses the second
vulnerability to call the public method SunToolkit.get-

Field, in order to get access to the private field State-

ment.acc and set it accessible. This private field holds
the instance of the current AccessControlContext, which is
used by Statement to perform the call. The exploit changes
this field’s value such that it holds a reference to another in-
stance of AccessControlContext which has all permissions.
After this modification, the Statement object can be suc-
cessfully used to disable the security manager.

Discussion
Summarizing our findings, we can see that a large number of
exploits benefit from design weaknesses. This includes the
heavy usage of restricted classes, caller-sensitive methods in
combination with confused deputies, as well as the incon-
sistencies between the reflection API and MethodHandles.
There are also single-step attacks, which exploit individual
security vulnerabilities introduced through implementation
errors. However, a proper redesign of the aforementioned
weakness areas, e.g., guarding sensitive functionality in re-
stricted classes with permission checks, and removing caller
sensitivity, could significantly improve the security of the
Java platform in practice.

Some of the weaknesses presented in this paper may also
be relevant to other platforms. The Microsoft .NET Com-
mon Language Runtime also uses stack-based access con-
trol to restrict access to sensitive resources. Consequently,
all weaknesses related to this access control model are po-
tentially relevant to the security of both platforms. This
primarily includes issues with confused deputies (W2) and
privileged code execution (W3).

Certain weaknesses may also be relevant to Android, since
most application code and system service code is written
in Java. For instance, Peles et al. show that serialization
vulnerabilities allow an attacker to execute arbitrary code in
many Android applications and services which could result
in privilege escalation [12].

6. RELATED WORK
To the best of our knowledge, this is the first study on a

large set of Java exploits in which abstractions of exploits are
compared to extract common patterns and point to security
weaknesses of the Java platform.

There are publications describing how Java exploits work
at a very low and technical level. For instance, Fireye de-
scribes four Java vulnerabilities [4] and Oh studied a specific
Java vulnerability that has been widely used for drive-by-
download exploits [3]. Kaspersky Labs provide statistics on
the attacks performed on Java regarding, e.g., the number
of attacks over time, and the distribution of attacks in terms
of geography [10].

Schlumberger et al. designed a tool to automatically de-
tect malicious Java applets [15] using machine learning. Ap-
proaches of this kind require thorough feature selection, and
our analysis of exploits could aid in the selection process.

Mastrangelo et al. studied the usage of sun.misc.Unsafe
in practice [11]. One of their findings is that developers use
it for performance optimization.

Several improvements have been proposed to overcome
limitations of the classical approach to stack-based access
control (SBAC). Abadi and Fournet propose History-Based

Access Control (HBAC), which extends SBAC by not only
considering the methods currently on the call stack, but also
all methods that completed execution before the permis-
sion check has been triggered [5]. Pistoia et al. propose
Information-Based Access Control (IBAC) to improve over
HBAC by properly selecting the methods that are actually
responsible for a certain security-sensitive operation, thus
making permission checks more restrictive and precise [14].

7. CONCLUSION
In this paper, we present a systematic and comprehensive

study of a large body of Java exploit samples. As a first
step, we harvested several online resources, such as exploit
databases and exploit frameworks, which resulted in 87 find-
ings. We reduced these original exploits to the minimal code
needed to actually execute an attack and integrated them
into our dedicated testing framework. Then, we removed
all exploits that were not reproducible from the sample set
and merged multiple instances of the same exploit into one
representation. This resulted in a final set of 61 unique, and
reproducible minimal exploits.

We developed a new meta model specifically for purposes
of analyzing the behavior of a large body of exploits and
used it to document the 61 minimal exploits. Based on this
extensive documentation, we derived a set of nine weak-
nesses which comprise commonly used vulnerabilities and
features of the Java platform, e.g., unauthorized use of re-
stricted classes, arbitrary classloading, caller sensitivity, or
MethodHandles. We explained in detail how attackers bene-
fit from those weaknesses, and how they can be combined to
full attack vectors. We found that there are three different
catogories of attack vectors: (1) single-step attacks (46%),
which exploit just a single vulnerability to achieve their final
goal; (2) restricted class attacks (51%), which make use of a
restricted class and combine multiple primitives to achieve
their goal; and (3) information hiding attacks (3%), which
use a combination of vulnerabilies to break information hid-
ing in order to disable all security checks.

Finally, we proposed ideas for improving the security ar-
chitecture to harden Java against future attacks similar to
the ones observed so far. With this we hope to spawn further
research in this area.

Acknowledgments
The authors wish to thank Marco Pistoia for his construc-
tive feedback and Julian Dolby for providing us with the
IBM JDKs. This work was supported by an Oracle Research
Grant and by the DFG Priority Program 1496 Reliably Se-
cure Software Systems through the project INTERFLOW.

8. REFERENCES
[1] Java trusted method chaining

(cve-2010-0840/zdi-10-056).
http://slightlyrandombrokenthoughts.blogspot.de/
2010/04/java-trusted-method-chaining-cve-2010.html.
[Online; accessed on 22-May-2016].

[2] The state of the module system.
http://openjdk.java.net/projects/jigsaw/spec/sotms/.
[Online; accessed on 22-May-2016].

[3] Recent java exploitation trends and malware.
https://media.blackhat.com/bh-us-12/Briefings/Oh/

BH US 12 Oh Recent Java Exploitation Trends and
Malware WP.pdf, 2012. [Online; accessed on
18-May-2016].

[4] Brewing up trouble: Analyzing four widely exploited
java vulnerabilities. https:
//www.fireeye.com/content/dam/fireeye-www/global/
en/current-threats/pdfs/rpt-java-vulnerabilities.pdf,
2014. [Online; accessed on 18-May-2016].

[5] Martin Abadi and Cédric Fournet. Access control
based on execution history. In NDSS, volume 3, pages
107–121, 2003.

[6] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela
Oueslati, and Mira Mezini. Taming reflection: Aiding
static analysis in the presence of reflection and custom
class loaders. In ICSE ’11: International Conference
on Software Engineering, pages 241–250. ACM, May
2011.

[7] Security Exploration. [se-2012-01] broken security fix
in ibm java 7/8.
http://seclists.org/bugtraq/2016/Apr/19, 2016.
[Online; accessed on 17-May-2016].

[8] Security Exploration. [se-2012-01] yet another broken
security fix in ibm java 7/8.
http://seclists.org/fulldisclosure/2016/Apr/43, 2016.
[Online; accessed on 17-May-2016].

[9] Li Gong and Gary Ellison. Inside Java (TM) 2
Platform Security: Architecture, API Design, and
Implementation. Pearson Education, 2003.

[10] Kaspersky Labs. Java under attack – the evolution of
exploits in 2012-2013.
https://securelist.com/analysis/publications/57888/
kaspersky-lab-report-java-under-attack, 2013. [Online;
accessed on 19-May-2016].

[11] Luis Mastrangelo, Luca Ponzanelli, Andrea Mocci,
Michele Lanza, Matthias Hauswirth, and Nathaniel
Nystrom. Use at your own risk: the java unsafe api in
the wild. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
pages 695–710. ACM, 2015.

[12] Or Peles and Roee Hay. One class to rule them all:
0-day deserialization vulnerabilities in android. In 9th
USENIX Workshop on Offensive Technologies
(WOOT 15), 2015.

[13] CP Pfleeger and SL Pfleeger. Security in computing.
4th, 2007.

[14] Marco Pistoia, Anindya Banerjee, and David A
Naumann. Beyond stack inspection: A unified
access-control and information-flow security model. In
2007 IEEE Symposium on Security and Privacy
(SP’07), pages 149–163. IEEE, 2007.

[15] Johannes Schlumberger, Christopher Kruegel, and
Giovanni Vigna. Jarhead analysis and detection of
malicious java applets. In Proceedings of the 28th
Annual Computer Security Applications Conference,
pages 249–257. ACM, 2012.

[16] Bruce Schneier. Attack trees. Dr. Dobb’s journal,
24(12):21–29, 1999.

[17] John Viega, Gary McGraw, Tom Mutdosch, and
Edward W. Felten. Statically scanning java code:
Finding security vulnerabilities. IEEE Software,
17(5):68–74, 2000.

http://slightlyrandombrokenthoughts.blogspot.de/2010/04/java-trusted-method-chaining-cve-2010.html
http://slightlyrandombrokenthoughts.blogspot.de/2010/04/java-trusted-method-chaining-cve-2010.html
http://openjdk.java.net/projects/jigsaw/spec/sotms/
https://media.blackhat.com/bh-us-12/Briefings/Oh/BH_US_12_Oh_Recent_Java_Exploitation_Trends_and_Malware_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Oh/BH_US_12_Oh_Recent_Java_Exploitation_Trends_and_Malware_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Oh/BH_US_12_Oh_Recent_Java_Exploitation_Trends_and_Malware_WP.pdf
https://www.fireeye.com/content/dam/fireeye-www/global/en/current-threats/pdfs/rpt-java-vulnerabilities.pdf
https://www.fireeye.com/content/dam/fireeye-www/global/en/current-threats/pdfs/rpt-java-vulnerabilities.pdf
https://www.fireeye.com/content/dam/fireeye-www/global/en/current-threats/pdfs/rpt-java-vulnerabilities.pdf
http://seclists.org/bugtraq/2016/Apr/19
http://seclists.org/fulldisclosure/2016/Apr/43
https://securelist.com/analysis/publications/57888/kaspersky-lab-report-java-under-attack
https://securelist.com/analysis/publications/57888/kaspersky-lab-report-java-under-attack

	Introduction
	Background
	The Java security model
	Special features

	Exploit sample set
	Modeling exploit behavior
	Exploit behavior
	A meta model to document exploits
	Documenting the exploit sample set

	Analysis and findings
	RQ1: What are the weaknesses attackers exploit to implement their attacks?
	RQ2: How do attackers combine the weaknesses to attack vectors?

	Related work
	Conclusion
	References

