
Analyzing Prerequisites of known Deserialization Vulnerabilities
on Java Applications

Bruno Kreyßig
Umeå University
Umeå, Sweden

bruno.kreyssig@cs.umu.se

Alexandre Bartel
Umeå University
Umeå, Sweden

alexandre.bartel@cs.umu.se

ABSTRACT
We analyze known deserialization exploits targeting applications
developed in the Java programming language. As previous research
implies, fully comprehending this type of vulnerability is no easy
task due to the complexity of exploitation, mostly relying on so-
called gadget chains. Even considering known gadget chains, knowl-
edge about their prerequisites is rather limited. In particular, the full
range of external library versions, adding exploitable gadgets to the
Java classpath was formerly only partially examined. We contribute
an in-depth analysis of publicly available Java deserialization vul-
nerabilities. Specifically, we experimentally assess the prerequisites
for exploitation, using 46 different gadget chains on 244 JDK and
5,455 Java dependency versions. Previous research only covered
19 of these gadget chains. Furthermore, we develop a command
line tool, Gadgecy, for lightweight detection of whether a given
Java project contains dependency combinations that enable gadget
chains. Using this tool, we conduct an analysis of 2,211 projects
from the Apache Distribution directory and 400 well-known Github
repositories. The outcome reveals that (1) deserialization exploits
apply to recent JDK and library versions, (2) these gadget chains are
not being fully reported, and (3) are frequently present in popular
Java projects (such as Apache Kafka or Hadoop).

CCS CONCEPTS
• Security and privacy→ Software and application security;
• Software and its engineering → Software defect analysis;
Object oriented development.

KEYWORDS
serialization, deserialization, gadget chain, Java, vulnerabilitiy, de-
pendency

1 INTRODUCTION
Whenever passing data between systems, serialization protocols
are inherently being used. Given the rising popularity of distributed
software architectures, the demand for keeping the serialization
interface secure also increases. Ranked as one of the OWASP Top
Ten vulnerabilities [26], insecure deserialization is renowned as a
serious security flaw within software applications. This kind of
vulnerability stems from the assumption that serialized data being
transferred between systems is trusted, and indeed the attack model
in general implies that the attacker has full control over the supplied
data. In contrast to injection-type vulnerabilities, however, the Java
serialization protocol is too complex to rely on a whitelisting mech-
anism [19]. Previous research has discovered, that it is difficult to
pinpoint the vulnerability to a specific section of code. Rather, it is

linked to the unfortunate constellation of multiple method invoca-
tions that can be combined into so-called gadget chains [19, 32, 42].
As discovered in previous research, Within the security community,
the popular Ysoserial tool [29] is an established repository for vali-
dated gadget chains that lead to the exploitation of Java applications.
The impact of these exploits ranges from remote code execution
(RCE) to arbitrary file uploads and network-based attacks.

From a developer’s perspective, it would prove helpful to know
whether a given application is susceptible to insecure deserializa-
tion. One approach consists of extracting all potentially dangerous
gadget chains within the source code and the libraries present on
the classpath. Research towards an algorithm achieving this goal
of detecting all gadget chains (known and unknown) is currently
being worked on [17–19, 32, 40], but has yet to show promising
results in terms of completeness and computational overhead. Lim-
itations in dealing with the path explosion problem in Java runtime
polymorphism, and means of validation in subsequent property
oriented programming must still be overcome. Even then, the algo-
rithm is likely to be too resource-intensive to be executed within
each cycle of a software development process. This implies the
demand for a lightweight alternative for detecting whether an ap-
plication is susceptible to a publicly known gadget chain (e.g., from
the Ysoserial repository) through analysis of software properties
(JDK build version and external dependencies).

The National Vulnerability Database (NVD) lists a range of CVEs
capturing deserialization vulnerabilities. In October 2023, 1,067
records match the corresponding CWE-502 (Common Weakness
Enumeration) [38]. Albeit capable of mapping Java library CPEs1
to CVEs on a unary scale (CVE-2015-6420 perfectly maps the Com-
monsCollections payloads from Ysoserial to the affected library ver-
sions [39]), the reporting format in particular fails to acknowledge
exploits relying on gadgets originating from multiple libraries. Ar-
guably, the CPE format definition is not capable of this task. Further-
more, the 1,067 CVE entries refer, in general, to vulnerabilities in
software products built for the Java execution environment. There-
fore, it is not possible to extract information regarding the root
cause of the vulnerability – JDK and library versions – from CVEs.
In the previous work from Sayar et al. [42], an experiment was con-
ducted in order to analyze the library versions and JDKs affected by
19 RCE vulnerabilities within the Ysoserial Repository. The research
goal was hereby to figure out the specific update that introduced
the gadget, and the patch, which later remediated the gadget. As
a byproduct, it became clear that the amount of library versions,
which enables insecure deserialization, is in fact much higher than

1The Common Platform Enumeration is used alongside the CVE to uniquely identify
soft- and hardware configurations to which a given CVE applies.

Kreyßig and Bartel

the versions mentioned within Ysoserial. We use this as a starting
point for defining our research questions:

RQ1: What are the dependency and JDK prerequisites for
known gadget chains?

To gain a full picture of the prerequisites for the exploitation of Java
deserialization vulnerabilities, we conduct a large-scale analysis of
46 gadget chains from the main branch of the Ysoserial repository,
the newgadget branch, unresolved pull requests, and the separate
CVE-2022-36944 PoC [46] on the combination of 244 JDK and
5,455 Java library JAR files. The results show that gadget chains
are present in recent versions of libraries and JDK releases.

RQ2: How are gadget chains being disclosed?

Through the given mapping of CVE identifiers to library versions
within the Maven repository, we find that the CVE discloses only 14
of 46 gadget chains. We also discuss why we believe the CVE is not
an appropriate solution for reporting dependencies used in gadget
chains and provide an alternate solution through the development
of the tool Gadgecy.

RQ3: How to determine whether a given Java applica-
tion contains the dependency prerequisites for insecure
deserialization?

Given that the majority of gadget chains rely on external dependen-
cies, we build Gadgecy to analyze Java projects and POM (Project
Object Model) dependency files. We then evaluate this tool on 2,211
popular Java-based projects in the Apache Distribution directory [1]
and 400 Github Java projects. As a result, 10,76% and 9,12% of the
projects within the respective evaluation data sets contain the de-
pendency (versions) required for a known gadget chain.

The remaining of the paper is organized as follows. In Section 2,
we give the technical background to deserialization vulnerabilities,
and analyze potential impacts. Section 3 lays out the experiment
framework. To answer our research questions, we evaluate the re-
sults in Section 4. Finally, we conclude with a brief review of related
contributions, limitations, and a summary in Sections 5, 6 and 7.

2 BACKGROUND
The exploitation of deserialization vulnerabilities aims at making
use of flaws in the way a target application handles reconstructing
objects from serialized input. In a trivial sense, this could mean an
attacker directly controlling fields within the serialized data that
affect the application behavior, e.g., setting an isAdmin-value from
false to true. While this example technically can also be described
as insecure deserialization, when it comes to Java deserialization
vulnerabilities, the biggest concern originates from supplying seem-
ingly unrelated objects. Upon invocation of the deserialization pro-
cess (in general, the readObject()method; see Listing 1), these objects
exploit weaknesses in the Java execution environment rather than
relying on the core application logic. Furthermore, this invocation

is triggered before the serialized object being read is cast to its
intended object type [32].

1 ObjectInputStream ois = new ObjectInputStream(
2 new FileInputStream("in.ser"));
3 MyObject o = (MyObject) ois.readObject();

Listing 1: Deserialization entry point

Take the following example of the URLDNS gadget chain, illus-
trated in Listings 2, 3 and 4. For reasons of interoperability, when
objects are being passed between different JVMs, the HashMap class
overrides the default behavior of the readObject() method. While
seemingly insignificant, thereby the hashCode() method of an arbi-
trary object is called (see Listing 2, lines 6 and 11). Recall that the
attacker has full control over the serialized data and thus also the
object fields. This implies the attacker may now supply any object
overriding hashCode() to invoke the object-specific implementation
of the method. This method may again contain interesting method
calls. Hence comes the notion of gadgets and gadget chains.

1 private void readObject(ObjectInputStream s) {
2 /* l. 1517-1555 omitted */
3 for (int i = 0; i < mappings; i++) {
4 K key = (K) s.readObject();
5 V value = (V) s.readObject();
6 putVal(hash(key), key, value, false, false);
7 }}
8 static final int hash(Object key) {
9 int h;
10 return (key == null) ? 0 :
11 (h = key.hashCode()) ^ (h >>> 16);
12 }

Listing 2: URLDNS gadgets in HashMap [5]

A gadget describes a method that opens up further method in-
vocations in additional gadgets. Notice that these gadgets may
originate from any class provided by the entire classpath. Accord-
ingly, a gadget chain combines multiple gadgets in such a way,
that an execution path from a serialization entry point to a security
sensitive method (i.e., sink) is reached. The sink method determines
the impact of the gadget chain. For example, this could be Run-
time.getRuntime().exec() leading to remote code execution or in
the URLDNS example InetAddress.getByName() (Listing 3, line 8)
performing an arbitrary DNS request. It follows that exploitable
gadget chains are generally not the result of a single programming
weakness, but rather the combination of all gadgets in the gadget
chain. This makes gadget chains hard to detect and remediate [42].
Taking these definitions into account, a Java deserialization vul-
nerability exists only if both an exploitable gadget chain can be
derived from the application classpath and the application exposes
an insufficiently hardened deserialization entry point.

Continuing with the example, a URL object within the HashMap
would delegate the invocation of hashcode() to a URLStreamHandler
(see Listing 3). Finally, the URLStreamHandler calls getHostAdress()
(see Listing 4, line 3), which then continues to the URLs getHostAd-
dress() method (line 7) and resolves the host’s domain name (List-
ing 3, line 8). In doing so, this invokes a DNS request to look up the

Analyzing Prerequisites of known Deserialization Vulnerabilities on Java Applications

Table 1: URLDNS gadget Chain

ObjectInputStream.readObject()
HashMap.readObject()
HashMap.hash()
URL.hashCode()
URLStreamHandler.hashCode()
URLStreamHandler.getHostAddress()
URL.getHostAddress()
InetAddress.getByName() // sink

hosts corresponding IP address. The entire call stack is summarized
in Table 1. Gadget chains can become much more complex and also
have more serious implications (see Section 2.2) than making an
application perform an arbitrary DNS request 2.

1 public synchronized int hashCode() {
2 /* l. 1156 - 1158 omitted */
3 hashCode = handler.hashCode(this);
4 return hashCode;
5 }
6 synchronized InetAddress getHostAddress() {
7 /* l. 987 - 994 omitted */
8 hostAddress = InetAddress.getByName(host);
9 /* l. 996 - 999 omitted */
10 }

Listing 3: URLDNS gadget in URL [3]

1 protected int hashCode(URL u) {
2 /* l. 364 - 371 omitted */
3 InetAddress addr = getHostAddress(u);
4 /* l. 373 - 397 omitted */
5 }
6 protected InetAddress getHostAddress(URL u) {
7 return u.getHostAddress();
8 }

Listing 4: URLDNS gadgets in URLStreamHandler [4]

2.1 The Ysoserial Exploit Repository
Ysoserial is a repository containing known gadget chains and a
tool for generating payloads out of the aforementioned gadget
chains [29]. In this context, a payload is the implementation of a gad-
get chain as a serialized Java object. The latest (at the time ofwriting)
Ysoserial release version, v0.0.6, implements 33 gadget chains. An
additional ten gadget chains exist within the newgadgets-branch:
Atomikos, Ceylon, CommonsCollections8, CommonsBeanutils2, Clo-
jure2, CreateZeroFile, Jython2, Ssrf, SpringJta, Struts2JasperReports.
Furthermore, one can find four additional gadget chains related to
jython-standalone, jython, rome, andwildfly-connector in unresolved
pull requests3. We denote these as the payloads Jython3, Jython4,
ROME2 andWildFly respectively. All of these gadget chains could
be verified on a simple vulnerable application, and thus they are
2The DNS request seems harmless, but can be used to confirm whether an application
is generally vulnerable to insecure deserialization as shown in [13].
3See [29] pull requests 200, 153, 167 and 177.

included in the experiment. Ysoserial organizes its gadget chains in
the src/main/java/ysoserial/payloads/ subdirectory. For most4 pay-
loads the annotation @Dependencies() denotes the dependencies
introducing the gadgets with exactly one dependency version for
which the exploit is known to succeed. As shown by Sayar et al. [42],
the affected dependency versions are more accurately depicted as a
range from the point of a vulnerable gadget being introduced in a
library to the patch thereof. We build on top of the previous work
(19 gadget chains), by considering all 47 Ysoserial gadget chains and
including 45 thereof in the experiment (see Section 3).

2.2 Impact Analysis of deserialization exploits
In addition to Ysoserial, we also include CVE-2022-36944 as the only
Proof-of-Concept we could find for a gadget chain not contained
within the repository. This leads to a total of 48 gadget chains. As
presented in Table 2, the majority (32) of exploits directly result
in Remote Code Execution. Note that payloads with multiple
gadget chain variations are summarized as bracketed ranges in
the table. The payloads marked with an asterisk denote the gadget
chains used in the experiment by Sayar et al. [42].

While requiring an additional step for preparation, the payload
for Python Script Execution ultimately results in RCE as well,
since it permits writing an arbitrary Python script and then execut-
ing it. Remote Class Loading payloads load a compiled Java class
from a remote server and instantiate it. Without outbound firewall
rules this also has the same effect as Remote Code Execution.

The File Upload payloads can be used to create a new file on the
target machine. With AspectJWeaver, the attacker has control over
both the filename and the file content. FileUpload1 andWicket1 also
write arbitrary data to a directory chosen by the attacker. Yet, the
target file name can only be random and is consequently difficult to
guess. Thismakes it easier to find the uploaded data externallywhen
using AspectJWeaver so that, for instance, a crafted JSP document
can be executed on a webserver (see implications of unrestricted
File uploads from OWASP [21]).

FileModification behaves slightly different than the File Upload
payloads in the sense that an attacker can define the file name but
not the content. As pointed out in the individual payload source
code of both CreateZeroFile and CVE-2022-36944 this could lead to
denial of service through overwriting or erasing vital files.

Java Expression Language (EL) is used for connecting a web
application’s presentation layer with the application logic [34]. For
example, a Java Server Page (.jsp) could invoke a function inside a
managed Java Bean or make use of a set of functions available by
default within EL. The adverse usage of arbitrary EL expressions
is summarized under CWE-917 as Expression language Injection,
which, depending on the server technologies in use, can result in
data leakage, tampering server-side logic, or even RCE [11, 36]. In
particular, this becomes evident with the payload Myfaces2, which
utilizes the same gadget chain as Myfaces1 to load a remote class
using Expression Language (see also Section 3.2).

Even with the patches to remediate loading remote class bases
over RMI and LDAP in place [9], the Java Naming and Directory
Interface (JNDI) still can be leveraged for Remote Code Execution,

4With the exception of Hibernate1 and Hibernate2, which need slightly differing de-
pendencies to be present, depending on the version of Hibernate being used.

Kreyßig and Bartel

Table 2: Impact of individual gadget chains

Impact Payload

RCE BeanShell1*, Ceylon, Click1*, Clojure1*, Clo-
jure2, CommonsBeanutils1*, CommonsBeanutils2,
CommonsCollections[1-7]*, CommonsCollections8,
Groovy1*, JBossInterceptors1, JSON1, Javassist-
Weld1, Jdk7u21*, Jython[2-4], MozillaRhino[1-2]*,
ROME*, ROME2, Spring[1-2]*, Struts2JasperReports,
Vaadin1*, Hibernate1

Python Script Jython1
Remote Class C3P0, Myfaces2
File Upload AspectJWeaver, FileUpload1, Wicket1
File Modification CreateZeroFile, CVE-2022-36944
EL invocation Myfaces1
JNDI-Lookup Atomikos, Hibernate2, SpringJta, WildFly
Blind SSRF Ssrf
Detection JRMPClient, JRMPListener, URLDNS

given the existence of exploitable ObjectFactories on the target
applications classpath. As shown in [45], this can, for instance,
be achieved with the BeanFactory class, commonly available on
Apache Tomcat Servers. Blind Server Side Request Forgery has
the target application invoke an arbitrary web request to an internal
or external service.

The payloads JRMPClient and JRMPListener are also related to
RMI, however, their impact is not as severe as object lookup pay-
loads. JRMPClient opens up a connection to a remote registry, but
without the existence of stubs on the target application, it will not
be possible to have the application load an arbitrary class from
an attacker-controlled proxy. As stated within the payload, it can
however, be employed for DoS. JRMPListener opens up an arbitrary
port. Finally, URLDNS invokes an arbitrary DNS lookup as shown
in the example in Section 2. Since neither JRMPClient, JRMPListener
or URLDNS require any dependencies on the target application
classpath, verifying their success is easy, and their impact is rather
low; these payloads are most likely used for the detection of a dese-
rialization entry point.

3 EXPERIMENTATION
We visualize our experiment setup in Figure 1. The capital letters of
the outlining boxes distinguish the main phases of (A) collecting the
data for the experiment, (B) preparing and executing the individual
gadget chains on a vulnerable application, and (C) processing the
resulting raw data for the purpose of analysis and development of
our tool. In the following sections, we elaborate inmore detail on the
implementation specifics. The result of running the experiment is a
collection of JSON files (one per payload) containing all exploitable
JDK-dependency combinations.

3.1 Preparation
External dependencies represent 44 out of 48 gadget chains (e.g.,
CommonsCollections1 requires the commons-collections library). To
determine the full version range for which a dependency enables

a gadget chain, we need to download all releases of these depen-
dencies (Figure 1, 1a). Towards this end, a total of 5,455 depen-
dency JAR files from 53 libraries were scraped from the Maven
repository. Note that occasionally newer versions of dependen-
cies get relocated to a different directory in Maven. For example,
javax.servlet/servlet-api relocated to javax.servlet/ javax.servlet-api
and later to jakarta.servlet/jakarta.servlet-api. These dependency
variations technically are distinct major releases of the same depen-
dency and are considered as such in the experiment, meaning that
if a payload includes servlet-api all variations are tested against it.

We download a total of 244 JDKs (1b): 122 JDK versions from
the Oracle archive [6], 38 from IBM [8], 35 from the OpenJDK
archive [2], and 49 from the Adoptium5 archive [25]. Note that we
leave out the Oracle JDK versions 8 and 11 due to the new OTN
license [10]. However, one can estimate from the corresponding
OpenJDK and Temurin-JDK versions, whether a payload would
also apply to the corresponding Oracle JDK.

We use three different JAR files for payload generation: two
individual builds of Ysoserial and the built CVE-2022-36944 PoC
(Figure 1, 2a). With some minor modifications 6 the payloads from
the newgadgets branch and the four payloads in open pull requests
can be ported to the main version of the Ysoserial tool. Additionally
we rebuild Ysoserial with Hibernate5 to have the Hibernate payloads
function for Hibernate versions 5 and above, as shown in [44]. The
Hibernate payloads for earlier versions of hibernate will still use
the regular build of Ysoserial.

Each payload is run for each of the 244 JDKs and combinations
of dependency versions. For maximum compatibility, we use the
same JDK for generating the Ysoserial payloads as for compiling
and running the target class (3a, 3b). However, beginning with Java
16 illegal reflective access is denied, an operation heavily used in
Ysoserial. So for JDK versions 16 and up, we craft the serialized
payload with the most recent Java version (e.g. JDK-15.0.2), which
permits that option [28].

To determine whether a payload exploits a given library-JDK
combination, we generate the exploit code so that it creates a proof
text file on success. We accommodate for parallel execution by
creating a unique filename from which we can later determine
the payload-, JDK-, and -dependency-version(s)-name. In regard to
the RCE payloads, the file creation is done trivially by executing
a shell touch command. For the remaining payloads, we perform
additional setup steps (3c) to write a file upon detection of successful
exploitation. After running the experiment, we collect all generated
files and parse them into individual result files per payload (4a).

3.2 Verifying Non-RCE Payloads
As the directory location can be freely chosen in the File Upload
payloads, these can be verified in a similar manner to the RCE pay-
loads. The Python script for the Jython1 payload directly executes
a command on the CLI which then creates the file. Specifically for
CVE-2022-36944, junk data is written into an existing file and after
the successful payload execution is confirmed by checking whether

5The Eclipse Adoptium project provides the Temurin-JDK as an alternative open-source
JDK [14].
6Such as moving the payloads Ssrf and CreateZeroFile to their own class definition
files.

Analyzing Prerequisites of known Deserialization Vulnerabilities on Java Applications

Figure 1: Experimentation framework

the file contents have been erased. The verification of all JNDI-
lookup payloads, C3P0, JRMPClient and Listener can be abstracted
through either receiving incoming socket requests triggered by the
payload or connecting to a port thereby opened and on success
creating the file for later retrieval. To speed up the process of testing
the Ssrf payload we run a simple Python webserver and have the
payload query a (non-existing) subdirectory named after the library
and JDK version used. We then collect the results from the web
server logs. For the URLDNS payload, we modify the vulnerable
Java class to use the local machine address as a DNS server and
capture incoming requests with a UDP socket server. Setting up an
environment for testing Myfaces1 requires adding a managed Bean
class to a web service and deploying it on an application server.
Towards this end, one would need to run a containerized applica-
tion server and mount the /tmp and webapps directory to the host,
to verify exploitation and redeploy without having to restart the
container. Note that the web application also needs to expose a
serialization entry point. Using this setup we were able to confirm
the Myfaces1 payload as being functional. However, we omit both
Myfaces1 and Struts2JasperReports from our experiments, since the
results would be prone to false positives and negatives depending
on the web application server (and version) being used.

We were unable to construct a working PoC for the payload
Myfaces2.Myfaces2 relies on the same gadget chain asMyfaces1 but
creates a specific Expression Language statement to be executed
using Myfaces1, which upon execution may result in instantiating
a remote class. That is to say in terms of dependency and JDK
requirements an application susceptible to Myfaces1 is also suscep-
tible to Myfaces2 and vice-versa7. With the omission of Myfaces1

7Although Myfaces1 provides more flexibility towards the EL expression being used
and thus in general will more often be successful with real applications.

and Struts2JasperReports we include 46 of 488 gadget chains in our
experiment.

3.3 Running the Experiment
For a given payload with required libraries 𝑙𝑖 , individual number of
versions 𝑣𝑒𝑟 (𝑙𝑖) and number of JDKs 𝑗 = 244 in the experimentation
dataset a total number of

244 ∗ 𝑣𝑒𝑟 (𝑙1) ∗ ... ∗ 𝑣𝑒𝑟 (𝑙𝑛)

would have to be run in order to capture every possible library-JDK
combination. Taking payloads such as JSON1 into consideration
this would mean running

244 ∗ 25 ∗ 259 ∗ 1 ∗ 11 ∗ 32 ∗ 11 ∗ 22 ∗ 259 ∗ 22 ≈ 7, 67 ∗ 1014

payload executions. This is neither feasible nor necessary (see
also [42]). The Ysoserial repository explicitly gives a combination of
library versions for which the exploit is known to function. There-
fore, we variate only one library version of this combination at a
time and fixate the other libraries to their proven version, resulting
in:

244 ∗ (𝑣𝑒𝑟 (𝑙1) + ... + 𝑣𝑒𝑟 (𝑙𝑛))
executions. Thus, for the gadget chains used in the experiment, the
upper bound for individual runs lies at 244 ∗ (259+ 251+ 220+ 260+
1 + 11) = 244, 732 when generating payloads with SpringJta.

The experiment is run on the Debian Linux 5.10.197 OS, with
a 64-core AMD EPYC 7713P processor (2.00 GHz) and 995 GB of
RAM. All code is written in Python, with the exception of the Java
classes used for verifying the payloads. We leverage GNU Parallel
for multi-threaded execution.

8As explained Myfaces2 cannot be described as a unique gadget chain, reducing the
total amount of gadget chains from 49 to 48.

Kreyßig and Bartel

4 EVALUATION
We systematically evaluate the experiment results in accordance
with our research questions. In RQ1, we discuss immediate findings
and how to interpret the experimentation data. This shows the
specific combinations of JDKs and dependencies required for an
exploitable gadget chain to be present. For 71,74% of gadget chains,
we are also able to condense and transform the results into an easy-
to-read, tabular format. Thereafter, we use the previous results to
highlight the difficulties of gadget chain disclosure in RQ2 and the
frequency of gadget chains being present in Java projects in RQ3.
Our aim is to verify our expectation that the general awareness
of gadget chains is low, whilst simultaneously showing that their
occurrence is widespread.

RQ1: What are the dependency and JDK prerequisites for
known gadget chains?

The raw experimentation data is composed of entries forming a
strict relationship between specific dependency and JDK versions.
We suspect that if one JDK is vulnerable to a payload, the depen-
dency prerequisites for all other applicable JDKs will be the same. In
doing so we decouple JDK and dependency requirements. Given 𝐿𝑖
as the set of library versions vulnerable to a specific payload when
run on JDK 𝑖 . We can calculate the subset of all library versions
common amongst JDKs and compare it to the superset of all distinct
library versions captured across all JDKs.

𝐿𝑐𝑜𝑚𝑚𝑜𝑛 =
⋂

𝑖∈ 𝐽 𝐷𝐾
𝐿𝑖 and 𝐿𝑎𝑙𝑙 =

⋃
𝑖∈ 𝐽 𝐷𝐾

𝐿𝑖

For 33 (71,74 % of) payloads 𝐿𝑐𝑜𝑚𝑚𝑜𝑛 and 𝐿𝑎𝑙𝑙 are equal. Table 3
summarizes the applicability of these exploits on JDK and library
versions in a condensed format. The asterisk (*) denotes that all
versions are affected. For ranges such as aspectjweaver[1.7.2 - *],
this is to be interpreted as all versions beginning from 1.7.2 are
affected. To give an example, Table 3 can be used to lookup the
prerequisites for the gadget chain CommonsBeanutils2. Given a
Java application exposing an insecure deserialization entry point,
the payload will lead to exploitation if the application satisfies
the following prerequisites. The dependency commons-beanutils
in version 1.9.0 or later and any version of commons-logging is
present on the application’s classpath, and it is running on an
applicable JVM. As denoted in the JDK column, this could be either:
any update of the Oracle- or OpenJDK up to version 15, or the IBM-
and Temurin-JDK in versions 8 and 11.

For the remaining 13 (28,26%) examined payloads, there is a
variation in the dependency versions used for exploitation among
susceptible JDKs. Hence, Table 3 cannot properly illustrate all possi-
ble combinations. For example, the C3P0 gadget chain was found to
work on 104 JDKs, but only 57 of these JDKs could be exploited with
the 0.9.5-pre9 version of the c3p0 dependency. Figures 2a and 2b
show the discrepancies for both dependencies involved in the C3P0
gadget chain. Variations of this kind may occur either due to net-
work errors when testing non-RCE payloads or incompatibilities
of newer dependency versions with old JDK versions. For instance,
we observe the latter for Vaadin1, where no exploitation is possible

0.
9.
5-
pr
e9

0.
9.
5-
pr
e1
0

0.
9.
5

0.
9.
5.
1

0.
9.
5.
2

0.
9.
5.
3

0.
9.
5.
4

0.
9.
5.
5

0

50

104

(a) c3p0

0.
2.
1-
RE

L.
0.
2.
2

0.
2.
3

0.
2.
3.
1

0.
2.
3.
2

0.
2.
3.
3

0.
2.
3.
4

0.
2.
4

0.
2.
5

0.
2.
6

0.
2.
6.
1

0.
2.
6.
2

0.
2.
6.
3

0.
2.
6.
5

0.
2.
7

0.
2.
8

0.
2.
9

0.
2.
10

0.
2.
11

0.
2.
12

0.
2.
14

0.
2.
15

0.
2.
16

0.
2.
17

0.
2.
18

0.
2.
19

0.
2.
20

0

50

104

(b) mchange-commons

Figure 2: Occurence of individual library versions in success-
ful C3P0 payload exploitation (104 JDKs)

using vaadin-shared starting from version 8.0.0 when testing on
Oracle JDK 7. When comparing the manifest files of vaadin-shared
before and after version 8, one finds that beginning with version
8.0.0 the manifest defines a Build-Jdk of 1.8.0_60 or higher. Con-
sequently, this results in an unsupported major.minor version error
during execution on updates of Oracle JDK 7. For this reason, the
application crashes before it is able to execute the gadget chain and
thus no exploitation can be observed. We refer to our repository
in Section 8, containing the experiment results for all 46 payloads,
including those not displayed in Table 3.

Analyzing the results unveils three immediate findings. For one,
gadget chain attacks are applicable to all JDK versions. Specifically,
the CommonsCollections6 and -7 payloads successfully exploit all
244 JDKs used in the experiment. Next, it also shows that an at-
tacker can use a combination of the payloads used for detecting
deserialization entry points to cover the full range of JDKs (without
any dependency needing to be present). As a third finding, we ob-
serve that the payloads AspectJWeaver, Ceylon, CommonsBeanutils2,
C3P0, Jython3, Jython4 Vaadin1, WildFly and SpringJta9 rely solely
on most-current dependency versions.

RQ2: How are gadget chains being disclosed?

We find that the CVE structure hardly is an ideal solution for re-
porting dependencies enabling gadget chains for two reasons:

(1) Gadget chains are not vulnerabilities as is. Theymay only be
leveraged in combination with an insecure deserialization
entry point toward exploitation.

(2) When gadget chains are composed of gadgets originating
from multiple different dependencies, it becomes difficult
to capture these within a CPE identifier, which only ac-
commodates the reporting of one specific configuration in
isolation.

Nevertheless, the Maven repository lists CVEs for dependencies
such as commons-collections, clearly denoting insecure deserializa-
tion [7, 39]. Thus, to prove our point, we scrape the CVE identifiers
of all library versions involved in executing a Ysoserial payload

9Vaadin-server 7.7.42 and Spring-core 5.3.31 are in this case recent versions since
vaadin 7.7.x and spring 5.3.x are still receiving releases, independently from the newer
major releases [7].

Analyzing Prerequisites of known Deserialization Vulnerabilities on Java Applications

Table 3: Payloads with no library variation among applicable JDK versions

Payload Libraries JDK

AspectJWeaver aspectjweaver[1.7.2 - *], commons-collections[20040616, 3.1 - 3.2.2] oracle-jdk-[9-*]-[*], ibm-jdk-[*], temurin-jdk-[*], openjdk-[*]
BeanShell1 bsh[2.0b5] oracle-jdk-[*], ibm-jdk-[*], temurin-jdk-[*], openjdk-[*]
Ceylon ceylon.language[*] jdk-[7-15]-[*], ibm-jdk-[8,11]-[*], temurin-jdk-[8,11]-[*], openjdk-[9-15]-[*]
Clojure1 clojure[1.8.0, 1.8.0-RC5] oracle-jdk-[6-15]-[*], ibm-jdk-[8,11]-[*], temurin-jdk-[8,11]-[*], openjdk-[9-15]-[*]
Clojure2 clojure[1.8.0, 1.8.0-RC5] oracle-jdk-[*], temurin-jdk-[*], openjdk-[*]
CommonsBeanutils1 commons-beanutils[1.9.0 - *], commons-collections[* - 3.2.2], commons-logging[*] oracle-jdk-[6-15]-[*], ibm-jdk-[8,11]-[*], temurin-jdk-[8,11]-[*], openjdk-[9-15]-[*]
CommonsBeanutils2 commons-beanutils[1.9.0 - *], commons-logging[*] oracle-jdk-[6-15]-[*], ibm-jdk-[8,11]-[*], temurin-jdk-[8,11]-[*], openjdk-[9-15]-[*]
CommonsCollections1 commons-collections[20040616, 3.1 - 3.2.1] oracle-jdk-[6,7]-[*]
CommonsCollections2 commons-collections4-[4.0] oracle-jdk-[6-15]-[*], ibm-jdk-[8,11]-[*], temurin-jdk-[8,11]-[*], openjdk-[9-15]-[*]
CommonsCollections3 commons-collections[20040616, 3.1 - 3.2.1] oracle-jdk-[6,7]-[*]
CommonsCollections4 commons-collections4[4.0] oracle-jdk-[6-15]-[*], ibm-jdk-[8,11]-[*], temurin-jdk-[8,11]-[*], openjdk-[9-15]-[*]
CommonsCollections5 commons-collections[20040616, 3.1 - 3.2.1] oracle-jdk-[7-14]-[*], ibm-jdk-[8,11]-[*], temurin-jdk-[8,11]-[*], openjdk-[9-14]-[*]
CommonsCollections6 commons-collections[20040616, 3.1 - 3.2.1] oracle-jdk-[*], ibm-jdk-[*], temurin-jdk-[*], openjdk-[*]
CommonsCollections7 commons-collections[20040616, 3.1 - 3.2.1] oracle-jdk-[*], ibm-jdk-[*], temurin-jdk-[*], openjdk-[*]
CommonsCollections8 commons-collections4[4.0] oracle-jdk-[7-15]-[*], ibm-jdk-[8,11]-[*], temurin-jdk-[11,8]-[*], openjdk-[9-15]-[*]
CreateZeroFile scala-library[2.12.3 - 2.12.7] oracle-jdk-[9 - *], ibm-jdk-[*], temurin-jdk-[*], openjdk-[*]
Groovy1 groovy[2.3.0-beta-2 - 2.4.0-beta-4] oracle-jdk-[6-13], ibm-jdk-[8,11]-[*], temurin-jdk-[8,11]-[*], openjdk-[9-13]-[*]
Jdk7u21 - oracle-jdk-6-[*], oracle-jdk-7-[*-21]
JRMPClient - oracle-jdk-[*], temurin-jdk-[*], openjdk-[*]
JRMPListener - oracle-jdk-[6 - 16]-[*], ibm-jdk-[8,11,16]-[*], temurin-jdk-[8,11,16]-[*], openjdk-[9 - 16]-[*]
Jython1 jython-standalone[2.5.2 - 2.5.4-rc1] oracle-jdk-[*], ibm-jdk-[8,11]-[*], temurin-jdk-[*], openjdk-[*]
Jython2 jython-standalone[2.5.2 - 2.5.4-rc1] oracle-jdk-[*], ibm-jdk-[8,11]-[*], temurin-jdk-[*], openjdk-[*]
Jython3 jython-standalone[2.7.3b1 - *] oracle-jdk-[12-*]-[*], ibm-jdk-[*], temurin-jdk-[*], openjdk-[11-*]-[*]
Jython4 jython[2.7.3b1 - *] oracle-jdk-[12-*]-[*], ibm-jdk-[*], temurin-jdk-[*], openjdk-[11-*]-[*]
MozillaRhino1 js[1.7R2] oracle-jdk-[7u45-14]-[*], ibm-jdk-[8,11]-[*], temurin-jdk-[8,11]-[*], openjdk-[9-14]-[*]
MozillaRhino2 js[1.7R2] oracle-jdk-[6-15]-[*], ibm-jdk-[8,11]-[*], temurin-jdk-[8,11]-[*], openjdk-[9-15]-[*]
ROME rome[0.5 - 1.0] oracle-jdk-[6-15]-[*], ibm-jdk-[8,11]-[*], temurin-jdk-[8,11]-[*], openjdk-[9-15]-[*]
ROME2 rome[0.5 - 1.0] oracle-jdk-[7u45 - 14.0.2], ibm-jdk-[8,11]-[*], temurin-jdk-[8,11]-[*], openjdk-[9-14]-[*]
Spring1 spring-core[4.0.1 - 4.2.2].RELEASE, spring-beans[3.0.0 - 4.3.30].RELEASE oracle-jdk-[6,7]-[*]
Spring2 spring-core[4.0.1 - 4.2.2].RELEASE, spring-aop[3.0.0 - 4.2.9].RELASE, aopalliance[*], commons-logging[*] oracle-jdk-[6,7]-[*]
Ssrf scala-library[2.12.3 - 2.12.7] oracle-jdk-[9 - *], ibm-jdk-[*], temurin-jdk-[*], openjdk-[*]
URLDNS - oracle-jdk-[7 - *]-[*], ibm-jdk-[*], temurin-jdk-[*], openjdk-[*]
CVE-2022-36944 scala-library[2.13.0-M5-6e0cba7 - 2.13.8] oracle-jdk-[12 - *], ibm-jdk-[11 - *], temurin-jdk-[11 - *], openjdk-[11 - *]

from the Maven repository website [7]. Then we query the NVD
API using the collected CVEs. We consider a gadget chain not to
be disclosed using the CVE if it is possible to find a combination of
dependency versions, for which none of the involved dependencies
has an associated CVE. Thereby, we determine whether a CVE is
related to a gadget chain by querying the CVE description for the
strings seriali(s|z)e, seriali(s|z)ation10 or marshall or if it contains
the corresponding CWE-502 weakness identifier. The 14 gadget
chains for which this yields true are listed in category (1) of Table 4,
with the associated CVEs listed in Appendix A. The dependencies
of another five gadget chains contain dependency versions covered
by CVEs, which are however generally unrelated to insecure dese-
rialization (category (2)). In contrast, 27 (58,70%) gadget chains are
uncovered by CVEs (3). This shows that developers cannot rely on
CVEs to highlight weaknesses in the dependencies used for a Java
project. With our work we attempt to bridge this gap by developing
a tool to detect the existence of dependencies leading to known
gadget chains being included in a Java application.

Table 4: CVE coverage of Ysoserial payloads

(1) direct: BeanShell1, CommonsCollections[1-8], CVE-2022-36944,
Groovy1, Jdk7u21, Jython[1-2]

(2) indirect: Hibernate[1-2], Spring[1-2], FileUpload1

(3) uncovered: AspectJWeaver, Atomikos, C3P0, Ceylon, Click1,
Clojure[1-2], CommonsBeanutils[1-2], CreateZeroFile, Jython[3-4],
MozillaRhino[1-2], ROME[1-2], URLDNS, JRMPClient, JRMPListener,
JavassistWeld1, JBossInterceptors1, JSON1, SpringJta, Ssrf, Vaadin1,
Wicket1, WildFly

10Note that by searching for strings the keywords deserialize and deserialization (British
and American English spelling) are also included.

RQ3: How to determine whether a given Java applica-
tion contains the dependency prerequisites for insecure
deserialization?

Only four (8,67%) gadget chains (JRMPClient, JRMPListener, URL-
DNS, Jdk7u21) rely solely on gadgets within the Java Class library,
meaning they require no additional dependencies (see Table 3). The
impact of the first three is less severe (see Section 2.2) and JDK
7u25 patches the latter [27]. Conversely, the results show that the
majority (38/42) of payloads relying on additional dependencies
are applicable to recent updates in LTS JDK versions. Therefore,
analyzing application dependencies can be considered a reason-
able approach for determining whether an application includes
known gadget chains. Going from this observation, we develop
Gadgecy, a tool for detecting these gadget-chain-enabling depen-
dencies. Gadgecy operates in two modes:

• Reading directories and comparing contained JAR file hashes
with the hashes of gadget-chain-enabling dependencies.

• Parsing of pom.xml dependency files and comparison with
experiment results.

Using Gadgecy, we perform two follow-up experiments to inspect
whether real-world projects include vulnerable dependency ver-
sions. First, we download 2,211 projects from the Apache Distri-
bution directory [1], excluding archived or JAR-less projects. The
resulting dataset includes 115,053 JAR files, meaning each project is
on average composed of 52 JAR files. Furthermore, we assume that
any JAR file within a project directory could be a runtime depen-
dency included within the classpath of the core application. Table 5
summarizes the results generated by Gadgecy. In total, 238 (10,76%)
projects contain the dependencies required for a gadget chain at-
tack, including widely used artifacts like Struts, Kafka, Hadoop,
Druid and Solr in their most recent versions. The most commonly

Kreyßig and Bartel

Table 5: Projects in Apache Distribution Directory containing
prerequisites for known gadget chains

Payload # Projects Examples

CommonsBeanutils2 171 Druid, Hadoop, Kafka, Struts
CommonsBeanutils1 169 Druid, Hadoop, Kafka, Struts
CommonsCollections 38 Airavata, SystemDS, Pig
→ (1,3,5,6,7)

AspectJWeaver 31 DolphinScheduler, StreamPark
C3P0 24 Solr, Zeppelin
Lazylist 9 Drill, James server
SpringJta 8 DolphinScheduler, Ignite
FileUpload1 6 ManifoldCF, Tomahawk
CreateZeroFile & Ssrf 5 HugeGraph, Inlong
ROME (1,2) 4 ManifoldCF, Archiva
Jython3 4 Hop Client
MozillaRhino (1,2) 3 Pig, SXF
CommonsCollections 3 Pig, Zeppelin

→ (2,4,8)
Spring (1,2) 1 Zeppelin

applicable payloads are CommonsBeanutils1 and CommonsBeanu-
tils2, the latter appearing slightly more frequently since it does not
require gadgets found in the commons-collections library. Note that
payloads with the same dependency prerequisites are grouped in
Table 5, as they consequently were found applicable to the same
set of projects.

For the second part of the analysis, we download the pom.xml
file structure from popular and active Java repositories. This im-
plies downloading the pom.xml at the root of the repository and
all pom.xml files defined as modules in subdirectories recursively.
Doing so provides the benefit of being able to use the Maven CLI
tool without having to clone the entire repository. We define pop-
ular as having a star count of 100 or above, and active as having
received an update in the year 2023 while not being flagged as
archived [31]. In addition, these repositories originate from a lim-
ited set of 95 renowned Github projects, to reduce the amount
of false positive findings from irrelevant, individual Java projects
(see appendix B). The resulting dataset consists of 400 repositories
with a total of 13,745 pom.xml files. Notice that pom.xml files ac-
commodate for the definition of modules in subdirectories of the
repository. This explains the large discrepancy between the amount
of repositories and dependency files. Given the dependency file
structure of the repositories, we generate the dependency trees for
all modules using the Maven Dependency Plugin [23] and analyze
these individually. In contrast to the previous experiment, using
the Dependency Plugin we can now accurately resolve transitive
dependencies, leading to fewer false negatives. It is important to
mention that according to Mavens dependency scope mechanism,
all transitive dependencies, but those defined for testing, will be
available during runtime [24]. Consequently, we find that 1,254
modules (9,12%) contain the dependency-version combinations re-
quired for the analyzed, known gadget chains. Furthermore, these
1,254 modules can be traced back to 147 (36,75%) of the repositories
in the dataset. Again, the CommonsBeanutils gadget chains con-
tribute to the largest amount of findings, with CommonsBeanutils2

being present in 1,112 (88,68%) and CommonsBeanutils1 in 1,104
(88,01%) of the detected modules.

We further investigate which dependencies in their respective
versions are responsible for the gadget chains to be present in
these Java projects. Table 6 summarizes the Top 10 (of 20 in total)
dependencies found to be part of a known gadget chain within a
module. For example, the commons-collections library is responsible
for 1,180 gadget chain findings, 1,088 in version 3.2.2 and 92 in
version 3.2.1 of the library. The information displayed in Table 6
is vital for the developers of these libraries since it reveals just
how frequently their library is the reason for weaknesses in real-
world applications. Towards application developers, it shows which
dependency patches to prioritize, should there be a newer version
not containing the gadgets used in a known gadget chain.

Leveraging Gadgecy, we demonstrate just how frequent (10,76%
and 9,12%) gadget chains appear in popular Java projects. Note that
these Java projects are often dependencies themselves or frame-
works, meaning they are likely used by other Java applications, thus
passing on gadget chains downstream. From a developer’s perspec-
tive, this implies the importance of knowing which gadget chains
can potentially be used against their applications and hardening
deserialization entry points accordingly (see Section 5.2). In general,
a fatal discrepancy between the potential impacts of insecure dese-
rialization (see Section 2.2), insufficient reporting mechanisms and
widespread gadget-dependency usage becomes evident. With the
tool Gadgecy (and the underlying dataset) it is possible to combat
the lack of visibility towards this issue.

5 RELATEDWORK
Frohoff and Lawrence first highlighted the inherent danger of inse-
cure object deserialization in a talk in 2015 [30]. It was later shown
that Java deserialization flaws are not limited to native Java ob-
ject serialization, but also other serialization libraries such as Kryo,
XStream or SnakeYAML [15]. Sayar et al. analyzed how gadgets are
introduced into Java libraries and how vendors patch deserialization
vulnerabilities [42].

5.1 Tools for detecting Deserialization
Vulnerabilities

Tools for detecting new gadget chains have been developed in [17–
19, 32, 40]. Other tools aid in identifying the existence of a deserial-
ization entry point within a given application. Java deserialization
Scanner [22] is a Burp Suite add-on that implements 20 hard-coded
payloads from the Ysoserial repository. Koutroumpouchos et al. [35]
developed a command line tool for detectingweb-based entry points
for deserialization. As such they focus only on detecting whether
such an entry point exists and not if there actually is an applicable
payload for exploitation. Joogle is a tool which helps in finding
interesting attack gadgets by searching for classes overriding magic
methods [20]. Insecure deserialization is not limited to Java. Simi-
lar projects to Ysoserial exist for .NET [37] and PHP [12]. Similar
to Ysoserial, these repositories collect known gadget chains and
provide a tool for automatic payload generation.

Analyzing Prerequisites of known Deserialization Vulnerabilities on Java Applications

Table 6: Top 10 dependencies enabling gadget chains in Github project dataset

Dependency # Modules # Repositories Versions

commons-collections 1180 137 (’3.2.2’, 1088), (’3.2.1’, 92)
commons-logging 1118 127 (’1.2’, 698), (’1.1.1’, 211), (’1.1.3’, 204), (’1.0.3’, 3), (’1.0.4’, 2)
commons-beanutils 1112 123 (’1.9.4’, 960), (’1.9.2’, 127), (’1.9.3’, 25)
aspectjweaver 360 22 (’1.8.13’, 127), (’1.9.7’, 119), (’1.9.6’, 65), (’1.8.9’, 15), (’1.8.10’, 8), (’1.9.21’, 8), (’1.9.20.1’, 5), (’1.9.0’, 4), (’1.9.20’, 3), (’1.8.6’, 2), (’1.9.5’, 2), (’1.9.9.1’, 2)
servlet-api 72 10 (’2.5’, 32), (’3.1.0’, 21), (’4.0.1’, 15), (’2.4’, 4)
spring-context 58 14 (’5.3.22’, 19), (’5.2.23.RELEASE’, 16), (’5.3.30’, 4), (’5.3.27’, 4), (’4.3.9.RELEASE’, 4), (’5.2.21.RELEASE’, 3), (’5.3.31’, 2), (’4.3.20.RELEASE’, 1), (’4.3.30.RELEASE’, 1), (’4.3.7.RELEASE’, 1),

(’5.3.20’, 1), (’5.1.1.RELEASE’, 1), (’5.3.2’, 1)
spring-beans 57 14 (’5.3.22’, 19), (’5.2.23.RELEASE’, 16), (’5.3.30’, 4), (’4.3.9.RELEASE’, 4), (’5.3.27’, 3), (’5.2.21.RELEASE’, 3), (’5.3.31’, 1), (’4.3.20.RELEASE’, 1), (’4.3.30.RELEASE’, 1), (’4.3.7.RELEASE’, 1),

(’5.3.20’, 1), (’5.1.1.RELEASE’, 1), (’5.3.18’, 1), (’5.3.2’, 1)
spring-core 56 14 (’5.3.22’, 18), (’5.2.23.RELEASE’, 16), (’5.3.30’, 4), (’5.3.27’, 4), (’4.3.9.RELEASE’, 4), (’5.2.21.RELEASE’, 3), (’5.3.31’, 1), (’4.3.20.RELEASE’, 1), (’4.3.30.RELEASE’, 1), (’4.3.7.RELEASE’, 1),

(’5.3.20’, 1), (’5.1.1.RELEASE’, 1), (’5.3.2’, 1)
spring-tx 53 14 (’5.3.22’, 16), (’5.2.23.RELEASE’, 14), (’5.3.30’, 4), (’5.3.27’, 4), (’4.3.9.RELEASE’, 4), (’5.2.21.RELEASE’, 3), (’5.3.31’, 1), (’4.3.20.RELEASE’, 1), (’4.3.30.RELEASE’, 1), (’4.3.10.RELEASE’, 1),

(’5.3.20’, 1), (’5.1.1.RELEASE’, 1), (’5.0.6.RELEASE’, 1), (’5.3.2’, 1)
spring-context-support 41 12 (’5.2.23.RELEASE’, 16), (’5.3.22’, 6), (’5.3.30’, 4), (’4.3.9.RELEASE’, 4), (’5.3.27’, 3), (’5.2.21.RELEASE’, 3), (’5.3.31’, 1), (’4.3.30.RELEASE’, 1), (’4.3.10.RELEASE’, 1), (’5.3.20’, 1), (’5.3.2’, 1)

5.2 Prevention
It was analyzed in [42] how vendors remediate deserialization vul-
nerabilities in their applications. The most frequent solutions are
to add an allow or deny list in alignment with JDK Enhancement
Proposal (JEP) 290 ObjectInputFilters [41], remove the Serializable
interface from gadgets, harden or remove the deserialization entry
point or update the libraries associated with the gadget chain used
for exploitation. With this work, we show that the latter option
will not be viable for some gadget chains. Backward-compatibility
breaking changes, beginning with JDK version 16, made access-
ing internal parts of the JDK, using reflection through unnamed
modules, denied per default [33]. Amongst others, the Commons-
Beanutils gadget chains, which were found to be most common
amongst Java projects in our experiment, rely on this mechanism
and can thus be remediated by migrating to JDK version 16 or
newer. However, at best, only trusted data should be serialized. All
other remediation strategies come with individual drawbacks, such
as maintaining ObjectInputFilters, so that they include all applicable
gadget chains without breaking the application logic.

6 LIMITATIONS
The scope of this publication is limited to the gadget chains known
in the Ysoserial repository [29] and the PoC for CVE-2022-36944
[46]. We are not aware of any other currently available resources
for publicly known gadget chains. Furthermore, Oracle JDK ver-
sions 8 and 11 are excluded from the study due to the OTN license.
Going from the results of the other JDK vendors the impact can
be estimated, but not definitely confirmed for these Oracle JDK
versions. Also, note that the study is confined to the native Java
Object Serialization. Other serialization mechanisms and formats
exist (e.g. XML, JSON, YAML), however, these come with their own
sets of vulnerabilities, as was analyzed in [15].

The developed tool Gadgecy only checks whether the dependen-
cies introducing the gadgets used for a Ysoserial payload are present.
For the results to translate to a security implication an execution
path to ObjectInputStream.readObject() using untrusted input is re-
quired to be present. Tools and frameworks to achieve this task
already exist [16, 43]. However, should the insecure deserialization
point originate from an external library or framework, this type of
analysis leads to false negatives. Finally, it needs to be mentioned
that our results are a snapshot of currently available gadget chains.

7 CONCLUSION
When dealing with deserialization vulnerabilities, it needs to be
acknowledged, that they derive from an unfortunate constellation
of individually harmless software properties. Without the presence
of either gadget-introducing dependencies or a reachable deserial-
ization entry point, no vulnerability exists to begin with. However,
in combination, the consequences are severe, more often than not
leading to remote code execution. This work demonstrates that
gadget-chain-enabling dependencies are in fact widespread, as they
appear in 10,76% and 9,12% of well-known Java projects within the
respective datasets. In particular, we find that popular Java depen-
dencies like Commons Beanutils, C3P0 and AspectJWeaver include
the gadgets required for an attack in their most recent versions.

Furthermore, our research reveals themajority (58,70%) of known
gadget chains as being entirely uncovered by CVEs. Seeing that the
CVE is not an ideal reporting mechanism for gadget chains raises
the question of how to make developers aware of the underlying
issue. Towards this end, we propose the tool Gadgecy for determin-
ing whether a given Java project contains the dependency require-
ments for a deserialization vulnerability. Its lightweight analysis
and simplicity enable easy integration in a CI/CD pipeline. Gadgecy
operates on built projects through checksum comparison of JAR
files contained within or on POM build files. The tool is an abstrac-
tion layer on top of the data collected by our experiments, providing
a nearly complete picture of dependency (-version) prerequisites
for known gadget chain attacks.

Our work aims to increase awareness towards Java deserializa-
tion vulnerabilities by showing that the dependency prerequisites
are easily fulfilled for a gadget chain attack. This renders the Java
standard serialization protocol unsafe without any further mitiga-
tion techniques in place. We provide a dataset mapping 46 known
gadget chains to the JDK and dependency versions they are ap-
plicable to. As such our dataset more than doubles the amount of
inspected gadget chains (46) compared to state-of-the-art (19). We
direct our further research at developing tools for the automatic dis-
covery of new gadget chains. The inspected, known gadget chains
provide a basis for our validation dataset.

8 DATA AVAILABILITY
We share the source code used for the experiments, the datasets,
results and the tool Gadgecy including a usage explanation with the
link https://github.com/software-engineering-and-security/
Gadgecy.

https://github.com/software-engineering-and-security/Gadgecy
https://github.com/software-engineering-and-security/Gadgecy

Kreyßig and Bartel

ACKNOWLEDGMENTS
We would like to thank Sabine Houy and Timothée Riom for their
feedback on this paper. This work was partially supported by
the Wallenberg AI, Autonomous Systems and Software Program
(WASP) funded by the Knut and Alice Wallenberg Foundation.

REFERENCES
[1] [n. d.]. Apache Distribution Directory. Retrieved 2023-11-10 from https:

//dlcdn.apache.org/
[2] [n. d.]. Archived OpenJDK GA Releases. Retrieved 2023-11-01 from https:

//jdk.java.net/archive/
[3] [n. d.]. java.net.URL openjdk. Retrieved 2023-11-03 from https://github.com/

openjdk/jdk/blob/master/src/java.base/share/classes/java/net/URL.java
[4] [n. d.]. java.net.URLStreamHandler openjdk. Retrieved 2023-11-03

from https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/
java/net/URLStreamHandler.java

[5] [n. d.]. java.util.HashMap openjdk. Retrieved 2023-11-03 from
https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/
java/util/HashMap.java

[6] [n. d.]. Looking for an Older Java Release? Retrieved 2023-11-01 from https:
//www.oracle.com/java/technologies/downloads/archive/

[7] [n. d.]. Maven Repository. Retrieved 2023-11-01 from https://mvnrepository.
com/

[8] [n. d.]. Semeru RuntimeDownloads. Retrieved 2023-11-01 from https://developer.
ibm.com/semeru-runtime-downloads

[9] 2018. CVE-2018-3149- Red Hat Customer Portal. https://access.redhat.com/
security/cve/cve-2018-3149

[10] 2019. Oracle Java SE License. Retrieved 2023-11-01 from https://www.oracle.
com/downloads/licenses/javase-license1.html

[11] 2022. Expression Language Injection | OWASP Foundation. https://owasp.org/
www-community/vulnerabilities/Expression_Language_Injection

[12] 2023. PHPGGC: PHP Generic Gadget Chains. https://github.com/ambionics/
phpggc original-date: 2017-07-03T08:54:25Z.

[13] Philippe Arteau. 2017. Detecting deserialization bugs with DNS exfiltra-
tion. https://www.gosecure.net/blog/2017/03/22/detecting-deserialization-bugs-
with-dns-exfiltration/

[14] Wayne Beaton and Eclipse Foundation. 2020. Eclipse Adoptium. https://projects.
eclipse.org/projects/adoptium

[15] Moritz Bechler. 2017. Java Unmarshaller Security. (May 2017). https://raw.
githubusercontent.com/mbechler/marshalsec/master/marshalsec.pdf

[16] Eric Bruneton, Remi Forax, and Eugene Kuleshov. [n. d.]. ASM. https://asm.
ow2.io/index.html

[17] Sicong Cao, Biao He, Xiaobing Sun, Yu Ouyang, Chao Zhang, Xiaoxue Wu,
Ting Su, Lili Bo, Bin Li, Chuanlei Ma, Jiajia Li, and Tao Wei. 2023. ODDFUZZ:
Discovering Java Deserialization Vulnerabilities via Structure-Aware Directed
Greybox Fuzzing. https://doi.org/10.48550/arXiv.2304.04233 arXiv:2304.04233
[cs].

[18] Sicong Cao, Xiaobing Sun, Xiaoxue Wu, Lili Bo, Bin Li, Rongxin Wu, Wei Liu,
Biao He, Yu Ouyang, and Jiajia Li. 2023. Improving Java Deserialization Gadget
Chain Mining via Overriding-Guided Object Generation. https://doi.org/10.
48550/arXiv.2303.07593 arXiv:2303.07593 [cs].

[19] Xingchen Chen, Baizhu Wang, Ze Jin, Yun Feng, Xianglong Li, Xincheng Feng,
and Qixu Liu. 2023. Tabby: Automated Gadget Chain Detection for Java Deseri-
alization Vulnerabilities. In 2023 53rd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). 179–192. https://doi.org/10.1109/
DSN58367.2023.00028 ISSN: 2158-3927.

[20] Narshan Dabirsiaghi. 2016. joogle. https://github.com/Contrast-Security-
OSS/joogle original-date: 2015-12-15T16:46:53Z.

[21] Soroush Dalili, Dirk Wetter, Landon Mayo, and OWASP. [n. d.]. Unrestricted
File Upload | OWASP Foundation. https://owasp.org/www-community/
vulnerabilities/Unrestricted_File_Upload

[22] federicodotta, Jeremy Goldstein, and András Veres-Szentikrályi. 2021. Java
Deserialization Scanner. https://github.com/federicodotta/Java-Deserialization-
Scanner original-date: 2015-12-08T14:31:15Z.

[23] Apache Foundation. 2023. Apache Maven Dependency Plugin – Introduction.
https://maven.apache.org/plugins/maven-dependency-plugin/index.html

[24] Apache Foundation. 2023. Maven – Introduction to the Dependency Mech-
anism. https://maven.apache.org/guides/introduction/introduction-to-
dependency-mechanism.html

[25] Eclipse Foundation. [n. d.]. Archive Adoptium. Retrieved 2023-11-01 from
https://adoptium.net/temurin/archive/

[26] OWASP Foundation. 2021. OWASP Top Ten. Retrieved 2023-10-23 from
https://owasp.org/www-project-top-ten/

[27] Chris Frohoff. 2016. Java 7u21 Security Advisory. https://gist.github.com/
frohoff/24af7913611f8406eaf3

[28] Chris Frohoff. 2022. Error while generating or serializing payload · Issue #176 ·
frohoff/ysoserial. https://github.com/frohoff/ysoserial/issues/176

[29] Chris Frohoff. 2023. ysoserial. https://github.com/frohoff/ysoserial original-date:
2015-01-28T07:13:55Z.

[30] Chris Frohoff and Gabriel Lawrence. 2015. AppSecCali 2015: Marshalling Pickles
by frohoff. https://frohoff.github.io/appseccali-marshalling-pickles/

[31] Github. 2022. Use the REST API to manage repositories on GitHub. https:
//ghdocs-prod.azurewebsites.net/_next/data/j2ZDr5NDLCOPOMZWq0N1b/
en/free-pro-team@latest/rest/repos/repos.json?apiVersion=2022-11-
28&versionId=free-pro-team%40latest&category=repos&subcategory=repos

[32] Ian Haken. 2018. Automated Discovery of Deserialization Gadget
Chains. https://i.blackhat.com/us-18/Thu-August-9/us-18-Haken-Automated-
Discovery-of-Deserialization-Gadget-Chains.pdf

[33] Florian Hauser. 2023. CODEWHITE | Blog: Java Exploitation Restrictions in Mod-
ern JDK Times. https://codewhitesec.blogspot.com/2023/04/java-exploitation-
restrictions-in.html

[34] Eric Jendrock, Ricardo Cervera-Navarro, Ian Evans, Kim Haase, and William
Markito. 2014. Java Platform, Enterprise Edition The Java EE Tutorial, Release 7.
Oracle, 151–161. https://docs.oracle.com/javaee/7/tutorial/jsf-el.htm

[35] Nikolaos Koutroumpouchos, Georgios Lavdanis, Eleni Veroni, Christoforos Ntan-
togian, and Christos Xenakis. 2019. ObjectMap: detecting insecure object de-
serialization. In Proceedings of the 23rd Pan-Hellenic Conference on Informatics
(PCI ’19). Association for Computing Machinery, New York, NY, USA, 67–72.
https://doi.org/10.1145/3368640.3368680

[36] MITRE. 2013. CWE - CWE-917: Improper Neutralization of Special Elements
used in an Expression Language Statement (’Expression Language Injection’)
(4.13). https://cwe.mitre.org/data/definitions/917.html

[37] Alvaro Muñoz. 2023. pwntester/ysoserial.net. https://github.com/pwntester/
ysoserial.net original-date: 2017-09-18T17:48:08Z.

[38] NIST. [n. d.]. NVD - Home. Retrieved 2023-10-24 from https://nvd.nist.gov/
[39] NIST. 2023. NVD - CVE-2015-6420. https://nvd.nist.gov/vuln/detail/CVE-2015-

6420
[40] Shawn Rasheed and Jens Dietrich. 2021. A hybrid analysis to detect Java serialisa-

tion vulnerabilities. In Proceedings of the 35th IEEE/ACM International Conference
on Automated Software Engineering (ASE ’20). Association for ComputingMachin-
ery, New York, NY, USA, 1209–1213. https://doi.org/10.1145/3324884.3418931

[41] Roger Riggs. 2016. JEP 290: Filter Incoming Serialization Data. https://openjdk.
org/jeps/290

[42] Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon. 2023. An In-depth
Study of Java Deserialization Remote-Code Execution Exploits and Vulnerabil-
ities. ACM Transactions on Software Engineering and Methodology 32, 1 (Feb.
2023), 25:1–25:45. https://doi.org/10.1145/3554732

[43] Uwe Schindler, Jochen Schalanda, DavidWeiss, and Dominik Stadler. 2023. Police-
man’s Forbidden API Checker. https://github.com/policeman-tools/forbidden-
apis original-date: 2015-03-13T22:50:03Z.

[44] Francesco Soncina (phra). 2018. Java Deserialization — From Discovery to
Reverse Shell on Limited Environments. https://medium.com/abn-amro-
red-team/java-deserialization-from-discovery-to-reverse-shell-on-limited-
environments-2e7b4e14fbef

[45] Michael Stepankin. 2019. Exploiting JNDI Injections in Java. https://www.
veracode.com/blog/research/exploiting-jndi-injections-java

[46] yarocher. 2023. lazylist-cve-poc: POC for the CVE-2022-36944 vulnerability
exploit. https://github.com/yarocher/lazylist-cve-poc

A DESERIALIZATION CVES
• bsh: CVE-2016-2510
• commons-collections: CVE-2015-7501, CVE-2015-6420
• commons-beanutils: CVE-2019-10086
• commons-fileupload: CVE-2013-2186
• groovy: CVE-2016-6814, CVE-2015-3253
• spring-core: CVE-2011-2894
• jython-standalone: CVE-2016-4000
• scala-library: CVE-2022-36944

B GITHUB PROJECTS
Activiti, airbnb, alibaba, Alluxio, android, androidannotations, AntennaPod, antlr, apache, apolloconfig, arduino, auth0,
Baseflow, bazelbuild, beemdevelopment, Blankj, btraceio, bumptech, clojure, commons-app, dbeaver, deeplearning4j,
dromara, eclipse, elastic, facebook, flyway, geogebra, google, GoogleContainerTools, graphql-java, greenrobot, hazelcast,
hibernate, JabRef, java-decompiler, jenkinsci, jitsi, journeyapps, junit-team, jwtk, keycloak, languagetool-org, lettuce-io,
libgdx, lingochamp, material-components, MinecraftForge, mockito, mybatis, NanoHttpd, neo4j, Netflix, netty, nostra13,
OpenRefine, openzipkin, oracle, PhilJay, pinpoint-apm, processing, projectlombok, provectus, quarkusio, questdb, Re-
activeX, realm, redis, redisson, resilience4j, roboelectric, seata, SeleniumHQ, signalapp, sirixdb, skylot, SonarSource,
sonatype, spring-projects, square, StarRocks, strongbox, supertokens, TEAMMATES, TeamNewPipe, Tencent, termux,
TheAlgorithms, thingsboard, trello, xwiki, Yalantis, zaproxy, zendesk, zxing

See section 8 for repository names and commit-hashes

https://dlcdn.apache.org/
https://dlcdn.apache.org/
https://jdk.java.net/archive/
https://jdk.java.net/archive/
https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/java/net/URL.java
https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/java/net/URL.java
https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/java/net/URLStreamHandler.java
https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/java/net/URLStreamHandler.java
https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/java/util/HashMap.java
https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/java/util/HashMap.java
https://www.oracle.com/java/technologies/downloads/archive/
https://www.oracle.com/java/technologies/downloads/archive/
https://mvnrepository.com/
https://mvnrepository.com/
https://developer.ibm.com/semeru-runtime-downloads
https://developer.ibm.com/semeru-runtime-downloads
https://access.redhat.com/security/cve/cve-2018-3149
https://access.redhat.com/security/cve/cve-2018-3149
https://www.oracle.com/downloads/licenses/javase-license1.html
https://www.oracle.com/downloads/licenses/javase-license1.html
https://owasp.org/www-community/vulnerabilities/Expression_Language_Injection
https://owasp.org/www-community/vulnerabilities/Expression_Language_Injection
https://github.com/ambionics/phpggc
https://github.com/ambionics/phpggc
https://www.gosecure.net/blog/2017/03/22/detecting-deserialization-bugs-with-dns-exfiltration/
https://www.gosecure.net/blog/2017/03/22/detecting-deserialization-bugs-with-dns-exfiltration/
https://projects.eclipse.org/projects/adoptium
https://projects.eclipse.org/projects/adoptium
https://raw.githubusercontent.com/mbechler/marshalsec/master/marshalsec.pdf
https://raw.githubusercontent.com/mbechler/marshalsec/master/marshalsec.pdf
https://asm.ow2.io/index.html
https://asm.ow2.io/index.html
https://doi.org/10.48550/arXiv.2304.04233
https://doi.org/10.48550/arXiv.2303.07593
https://doi.org/10.48550/arXiv.2303.07593
https://doi.org/10.1109/DSN58367.2023.00028
https://doi.org/10.1109/DSN58367.2023.00028
https://github.com/Contrast-Security-OSS/joogle
https://github.com/Contrast-Security-OSS/joogle
https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
https://github.com/federicodotta/Java-Deserialization-Scanner
https://github.com/federicodotta/Java-Deserialization-Scanner
https://maven.apache.org/plugins/maven-dependency-plugin/index.html
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
https://adoptium.net/temurin/archive/
https://owasp.org/www-project-top-ten/
https://gist.github.com/frohoff/24af7913611f8406eaf3
https://gist.github.com/frohoff/24af7913611f8406eaf3
https://github.com/frohoff/ysoserial/issues/176
https://github.com/frohoff/ysoserial
https://frohoff.github.io/appseccali-marshalling-pickles/
https://ghdocs-prod.azurewebsites.net/_next/data/j2ZDr5NDLCOPOMZWq0N1b/en/free-pro-team@latest/rest/repos/repos.json?apiVersion=2022-11-28&versionId=free-pro-team%40latest&category=repos&subcategory=repos
https://ghdocs-prod.azurewebsites.net/_next/data/j2ZDr5NDLCOPOMZWq0N1b/en/free-pro-team@latest/rest/repos/repos.json?apiVersion=2022-11-28&versionId=free-pro-team%40latest&category=repos&subcategory=repos
https://ghdocs-prod.azurewebsites.net/_next/data/j2ZDr5NDLCOPOMZWq0N1b/en/free-pro-team@latest/rest/repos/repos.json?apiVersion=2022-11-28&versionId=free-pro-team%40latest&category=repos&subcategory=repos
https://ghdocs-prod.azurewebsites.net/_next/data/j2ZDr5NDLCOPOMZWq0N1b/en/free-pro-team@latest/rest/repos/repos.json?apiVersion=2022-11-28&versionId=free-pro-team%40latest&category=repos&subcategory=repos
https://i.blackhat.com/us-18/Thu-August-9/us-18-Haken-Automated-Discovery-of-Deserialization-Gadget-Chains.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Haken-Automated-Discovery-of-Deserialization-Gadget-Chains.pdf
https://codewhitesec.blogspot.com/2023/04/java-exploitation-restrictions-in.html
https://codewhitesec.blogspot.com/2023/04/java-exploitation-restrictions-in.html
https://docs.oracle.com/javaee/7/tutorial/jsf-el.htm
https://doi.org/10.1145/3368640.3368680
https://cwe.mitre.org/data/definitions/917.html
https://github.com/pwntester/ysoserial.net
https://github.com/pwntester/ysoserial.net
https://nvd.nist.gov/
https://nvd.nist.gov/vuln/detail/CVE-2015-6420
https://nvd.nist.gov/vuln/detail/CVE-2015-6420
https://doi.org/10.1145/3324884.3418931
https://openjdk.org/jeps/290
https://openjdk.org/jeps/290
https://doi.org/10.1145/3554732
https://github.com/policeman-tools/forbidden-apis
https://github.com/policeman-tools/forbidden-apis
https://medium.com/abn-amro-red-team/java-deserialization-from-discovery-to-reverse-shell-on-limited-environments-2e7b4e14fbef
https://medium.com/abn-amro-red-team/java-deserialization-from-discovery-to-reverse-shell-on-limited-environments-2e7b4e14fbef
https://medium.com/abn-amro-red-team/java-deserialization-from-discovery-to-reverse-shell-on-limited-environments-2e7b4e14fbef
https://www.veracode.com/blog/research/exploiting-jndi-injections-java
https://www.veracode.com/blog/research/exploiting-jndi-injections-java
https://github.com/yarocher/lazylist-cve-poc

