
Potential Component Leaks in Android Apps
An Investigation into a new Feature Set for Malware Detection

Li Li∗, Kevin Allix∗, Daoyuan Li∗, Alexandre Bartel†, Tegawendé F. Bissyandé∗, Jacques Klein∗
∗SnT, University of Luxembourg, firstName.lastName@uni.lu

†EC SPRIDE, Technische Universität Darmstadt, firstName.lastName@ec-spride.de

Abstract—We discuss the capability of a new feature set
for malware detection based on potential component leaks
(PCLs). PCLs are defined as sensitive data-flows that involve
Android inter-component communications. We show that PCLs
are common in Android apps and that malicious applications
indeed manipulate significantly more PCLs than benign apps.
Then, we evaluate a machine learning-based approach relying
on PCLs. Experimental validations show high performance for
identifying malware, demonstrating that PCLs can be used for
discriminating malicious apps from benign apps.

I. INTRODUCTION

Recent statistics1 from McAfee states that the total number
of mobile malware samples exceeded five million, growing by
112% in one year. Indeed, mobile devices are a popular target
for attackers, and app markets are still abused by malware
developers for spreading their malicious apps. Consequently,
the security guard of such markets have become an essential
challenge for both end users and market maintainers.

Machine learning techniques, by allowing to sift through
large sets of apps to detect malicious apps, appear to be
promising for large-scale malware detection and eventually
to keep malicious apps from entering app markets [2]. State-
of-the-art machine learning approaches for Android malware
detection mainly differ in the feature sets that are considered
for training the classifiers. For example, Canfora et al. [7] rely
on system calls and permissions while Gascon et al. [12] use
call graph properties. Other examples of recurrent feature sets
include Java code properties, Intent Filter information, strings,
etc.

Recently, MUDFLOW [6] has proposed to extract behav-
ioral features by taking into account sensitive data flows in
Android apps to identify malware. In this paper, we also study
the capability of specific sensitive data-flow features to be dis-
criminative in Android malware detection as in MUDFLOW.
Contrary to MUDFLOW, for which the source and sink of
the data-flow are necessarily within a single component, we
consider data-flows that may led to leaks between two compo-
nents such as data-flow coming from a source and going out
of the component without knowing yet if the related data will
go to a sink. Indeed, these potential component leaks (PCLs)
are meaningful characteristics of malware since researchers
have shown that the inter-component communication (ICC)

1http://www.mcafee.com/in/resources/reports/rp-quarterly-threat-q3-
2014.pdf

mechanism introduces a lot of vulnerabilities (e.g., Activity
Hijacking [21]).

In our previous work, we have developed PCLeaks [17],
a tool for detecting potential component leaks involving two
components. For the purpose of this study, we have extended
PCLeaks to take into account the case where more than two
components are involved in the leak (e.g., one component is
used as a bridge component between two others).

This paper reports on an empirical investigation into po-
tential component leaks in Android apps. Eventually, we
assess the relevance of potential component leaks as features
for machine learning-based Android malware detection. For
instance, we experimentally check whether the performance
achieved with these features can be generalized to different
clusters of Android apps.

The contributions of this paper are as follows:
• We present a discussion on the different types of potential

component leaks in Android apps.
• We empirically investigate the distribution of potential

component leaks in malicious and benign app datasets.
• We further investigate the discriminative power of PCL-

based features for machine learning-based malware de-
tection.

Space limitations preclude us from including some ex-
periments on generalization analysis of machine learning-
based classifiers. We thus publish an accompanying Technical
Report [15], which investigates the extent of dependency
between the training data and the yielded classifiers. Through
the investigation, we advocate that the assessment of feature
sets must dig into the composition of training datasets.

II. POTENTIAL COMPONENT LEAKS

In a previous work [16], we have shown that ICCs are used
to leak sensitive data across components. Any component can
potentially participate in a leak, for instance by retrieving a
piece of sensitive information, by sending this information,
or simply by playing the role of a bridge between two other
components. Thus, when performing static analysis on a single
component, some of the data-flow paths, leaking data across
the boundary of the component can be identified. In this paper,
those data-flow paths are called Potential Component Leaks
(PCLs). A PCL is not per se a leak but it might be exploited
by other components and eventually contribute to a leak of
private data.

Fig. 1 illustrates four different scenarios of data leakages,
three of which represent PCLs. In this figure, (A) represents
the “traditional” intra-component privacy leaks, which have
been well studied in the literature [5]. In the present study, we
do not consider such leaks since they are fully contained in one
single component—i.e. a piece of data is both obtained and
leaked inside one component—and hence do not involve any
Inter-Component Communication. In (B), the leaked data is
exfiltrated by the component, while in (C) the data is obtained
from the component. Finally, in (D), the leaked data travels
through the component which is merely used as a bridge. From
these schematic examples, we see that a component is involved
in a PCL either by providing an entry-point or by providing
an exit-point for leaking the data.

(A)

(B)

(C)

(D)

entry-point

exit-point

source
sink

Legend

Fig. 1: Examples of leak schemes including “traditional” intra-
component leaks (A) and PCLs ((B), (C) and (D)).

A. Characterization of Entry and Exit points
Unlike traditional Java apps, which come with a single

entry point (main method), an Android app includes several
components, each of which may contain several entry-points
for launching the app. Because components can use different
methods to call out other components, each component may
contain multiple exit-points.

We now detail the criteria for identifying such entry-points
and exit-points.

Entry-points: Entry-points are methods where data can be
transferred into a component, through parameters, between
components. In our study, we consider the following methods:

• Any method such as getStringExtra() that obtains
data from Intents (or Bundles).

• Any lifecycle method that takes an Intent as a parameter2.
• Any method that obtains data from ContentValues 3.
• Any method of ContentResolver such as query()

that acquires data from other components (or apps).
Exit-points: An exit-point is a method call through which

data can be transferred outside a component. For example,
the startActivity() method can be used to trigger data
exchange when one component launches another. We consider
all such ICC methods as exit-points. We also take into account
such methods of ContentResolver such as insert()
that are capable to transfer data to ContentProviders.

2 It is not necessary for entry-points to get data from Intents since Intents
can be directly leaked through components, e.g., type (D) in Fig. 1

3Like Intents, ContentValues are used to exchange data between
components. However, they are used to transfer data to ContentProviders
while Intents are used for the other three types of components.

B. PCL types

In this section, we introduce the three types of PCLs that
are investigated. An example of PCL is shown in Fig. 2, where
a sensitive data (device id) is collected in a first component
(1) and leaked through an ICC method to another component
(2) which simply forwards it to a third component (3) where
it is eventually leaked outside the device through SMS. To
detect such leaks, PCLeaks performs static taint analysis on
each app and tracks the sensitive data across components from
its source to sink.

1:onCreate(Bundle b) {
2: id = getDeviceID();
3: Intent i1 = new Intent(action1);
4: i1.putExtra("key", id)
5: sendBroadcast(i1)
6:}

11:onReceive(Context c, Intent i2) {
12: Intent i2 = new Intent(action2);
13: s2 = i2.getStringExtra("key");
14: i2.putExtra("key2", s2);
15: c.startService(i2);
16:}

21:onStartComand(Intent i3,) {
22: s3 =i3.getStringExtra("key");
23: sendSMS(s3)
24:}

APP1 : Activity APP2 : Receiver APP3 : Service

getDeviceID

sendSMS(1)
(3)

(2)

ICC1 ICC2

Fig. 2: An example of PCLs.

Potential Active Component Leak (PACL). We define a
PACL as a taint flow path starting from a source (defined as
calls into resource methods returning non-constant values into
the application code [23]) and ending with an exit-point. Such
PCLs are referred to as “active”, as the involved component is
actively leaking sensitive data that it collected itself to other
components (cf. (1) in Fig. 2).

Potential Bridge Component Leak (PBCL). We define
a PBCL as a taint flow path starting from an entry-point
and ending with an exit-point. Such PCLs are referred to as
“bridge”, as the involved component is transferring sensitive
data collected by a different component to another component
(cf. (2) in Fig. 2).

Potential Passive Component Leak (PPCL). We define a
PPCL as a taint flow path starting from an entry-point and
ending with a sink (defined as calls into resource methods
accepting at least one non-constant data value from the appli-
cation code as parameter, if and only if a new value is written
or an existing one is overwritten on the shared resource (e.g.,
GSM network) [23]). Such PCLs are referred to as “passive”,
as the involved component is passively leaking sensitive data
collected by other components (cf. (3) in Fig. 2).

Note that the Android system provides two types of mech-
anism to protect components of being misused by other com-
ponents: the export attribute and permissions. i) The export
attribute is used to express the fact that other components
can “access” the exported one. Thus, only exported compo-
nents can potentially leak private data (PPCL and PBCL).
ii) Permissions can be used at component level. When a
component is protected by a permission, the apps that want
to access this component must have first requested, and be
granted this permission. In our detection of PCLs, we take
into account these two types of mechanism, for instance by
checking whether the export attribute is used or not.

III. EXPERIMENTAL SETUP

In this section we detail the settings used in PCLeaks to
yield PCLs. We also present the dataset for the experiments
as well as the construction of the feature vectors for machine
learning experiments.

A. PCLeaks Settings

In this study, all PCLs are detected by a new version of
PCLeaks [17] which has been extended to detect PBCLs as
well. PCLeaks uses a static taint analysis approach to track
data paths from sources to sinks. We discuss in this section
how such sources and sinks are determined in our work.

Sensitive sources and sinks. The key idea behinds static
taint analysis is to identify a path that starts from a sensitive
source and ends with a sensitive sink. In this study, the sensi-
tive source and sink we use are extracted by SUSI [23], which
automatically classifies all methods in the whole Android API
as source, sink or neither. In Android 4.2, SUSI yields 18,076
source methods and 8,314 sink methods. Theoretically, there
are 150,283,864 (18,076 * 8,314) different taint paths (the
source to sink pairs) PCLeaks can report. Instead of identi-
fying PCLs by method pairs, we group methods with similar
functionality into categories (e.g., group methods Log.e() and
Log.v() into category LOG) and use this category in lieu of
the fully-qualified method name. This categorization allows to
vastly reduce the number of different identifying pairs down
to a more manageable value. We use the categories provided
by SUSI for our study. Note that we have ignored methods
that are classified as NO_CATEGORY by SUSI except for
methods related to shared preferences since they are well
used in Android apps, for which we create a new category
(SHARED_PREFERENCES). Besides, we create four new cat-
egories (one for each component type) to further break down
the behavior of potential component leaks.

Analysis Settings. As mentioned in [17], PCLeaks lever-
ages the static taint analysis tool FlowDroid to identify data
flows in Android apps. Because FlowDroid analyzes a whole
Android app and aims to provide highly precise results, it
usually takes a lot of time and resources to analyze an app. In
favor of a faster analysis, we use the same FlowDroid settings
as MUDFLOW [6] chooses (Explicit flow only, Disable flow-
sensitive alias search, Maximum access of path length of 3,
No-Layout mode and No static fields4) , which sacrifices some
amount of precision for speed and memory. As a result, the
detected potential component leaks may have false positives
as well as false negatives. However, our goal in this paper is
not to prove the presence or absence of flows but to study the
distribution difference of potential component leaks between
malware and goodware.

Advertisement Libraries. Most Android apps are free, they
usually use advertisement to get profit, which are delivered
through specific advertisement libraries. These libraries access

4Explanations for these FlowDroid settings can be found at https://github.
com/secure-software-engineering/soot-infoflow-android/wiki

sensitive data such as the unique device id to deliver per-
sonalized advertisements. However, the potential component
leaks (flows) introduced by advertisement libraries are separate
from the actual app code. As shown in MUDFLOW [6],
advertisement libraries are frequently used and their flows
(PCLs) thus become “normal”, diluting the impact of actual
app flows. Therefore, we follow MUDFLOW’s assumption
that advertisement libraries are trustworthy and ignore all the
PCLs taking place in advertisement libraries, allowing our
study to focus on the actual app PCLs. We use the same list
of libraries MUDFLOW uses to exclude PCLs.

B. Datasets

For the purpose of our experiments, we collected a dataset
of Android apps from Android markets including the official
GooglePlay store. For each app, we also retrieved analysis
results of anti-virus products hosted by VirusTotal. Then, based
on the results of VirusTotal, we build two disjoint sets: One set,
noted M (for Malware), containing only malicious apps5, and
G (for Goodware) containing only benign apps. Each dataset
contains 5,000 apps which we evaluate with PCLeaks.

All our experiments are performed on the UL HPC plat-
form [24]. For each Android app, we allocate one core for
PCLeaks to analyze it. The Java heap is set to 8 gigabytes and
the time out is set to 12 hours. Recall that we start with two
data sets containing 5,000 apps each for this study. Because
some of them fail (e.g., exception or time out) or do not
contain any PCLs, the result of the PCL extraction process
contain 2,822 goodware and 3,785 malware, each containing
at least one PCL.

C. Feature Set

One goal of this study is to assess if PCLs can be used
as features for machine learning-based malware detection to
suggest potential malicious apps. Machine learning algorithms
cannot directly work on Android apps. Each app must be
represented by a vector of properties, called a feature vector
in the context of machine learning. In this study, our feature
vectors are built with the results (PCLs) of PCLeaks, after
analyzing all the apps in our dataset. Let L be the feature
vectors we build, given an app a, for each PCL li ∈ L, we
value it as either 0 for the case that a does not contain li or
the actual number of li reported by PCLeaks. Recall that we
use categorizations instead of methods to describe the detected
taint flows (PCLs). Thus, our feature set is made of category
pairs.

IV. EMPIRICAL RESULTS

In this study, we address the following research questions:
• RQ1: Are PCLs common in Android apps?
• RQ2: Is there a significant difference in the presence of

PCLs between malicious and benign apps? If so, is this
difference similar for all PCL types?

5We consider an app is malicious if at least 20 different anti-virus products
detect it as such. An app is considered benign, or Goodware only if it is not
detected by any anti-virus product.

https://github.com/secure-software-engineering/soot-infoflow-android/wiki
https://github.com/secure-software-engineering/soot-infoflow-android/wiki

• RQ3: Can PCLs be used as features for machine learning-
based malware detection?

A. Occurrence of PCLs in Android Apps

Fig. 3a plots the distribution of the number of PCLs per app
from our dataset. The median value indicates that half of the
apps contain at least 20 PCLs. Excluding outliers, which are
automatically identified by the R statistics tool, the number of
PCLs per app ranges from 0 to about 100. Because the various
apps in our dataset are not equivalent in terms of code size and
in terms of components, we further investigate the distribution
of PCLs by normalizing the result in those two dimensions.
Fig. 3b depicts the distribution of PCLs per 100 kilobyte of
bytecode. The median number of PCLs per 100kB is around
3, while the maximum is slightly above 20. Finally, Fig. 3c
presents the number of PCLs per component in the apps of
the datasets. Components have a median value of 1 PCL, with
a maximum of 6 PCLs per component.

0
20

40
60

80
10

0

#.
 o

f P
C

Ls

(a) Per app

5
10

15
20

#.
 o

f P
C

Ls

(b) Per 100kB

1
2

3
4

5
6

#.
 o

f P
C

Ls

(c) Per component

Fig. 3: Distribution of PCLs in Android apps: un-normalized (per app)
and normalized densities (per 100kB bytecode and per component)�

�
�
�

RQ1:Although PCLs are common in our datasets,
their distribution is uneven across apps and across

components.

B. Distribution of PCLs between malicious and benign apps

Following the findings on the occurrence of PCLs in An-
droid apps in general, we further investigate whether the distri-
bution of PCLs varies between malicious and benign apps. We
therefore separately show in Fig. 4a the boxplots representing
the number of PCLs for the malware and goodware datasets.
The median values indicate that in general half of malware
apps contain each more than 22 PCLs while this median
value amounts to 8 for in goodware apps. To assess the
significance of this difference we perform a Mann-Whitney-
Wilcoxon (MWW) test which was successful (with p-value
< 0.001).

We then explored whether this difference is similar for all
types of PCLs considered in this study. The results show
that PACLs, depicted in Figure 4b, are the most unequally
distributed between malware and goodware. The median value
for PACLs is 15 for malicious apps and only 1 for benign apps.
The differences, according to MWW test, although statistically
significant, are less important for PPCLs (Figure 4c, median
values 4 for malware and 2 for goodware), and PBCLs
(Figure 4d, median values 2 for malware and 0 for goodware).

�

�

�

�

RQ2:Malicious apps contain significantly more
PCLs than benign apps. This difference is most

important in the case of Potential Active Component
Leaks, i.e., where components actively forward data

that they collect outside to other components

C. Malware identification

Empirical findings from previous section on the presence of
PCLs in malware and goodware datasets suggest that PCLs can
be used to discriminate malicious apps from benign apps. In
this section, we investigate this possibility by implementing
and assessing a machine learning-based malware detection
approach leveraging PCLs as classification features.

We perform extensive experiments, tuning different ma-
chine learning approach parameters, to gather insights for the
practical use of PCLs as features. In particular we evaluate
the performance of the features in combination with different
machine learning classification algorithms. We also consider
the impact of class imbalance in the dataset by varying
the ratio between malware and goodware in the validation
experiments.

Effect of Classification Algorithm. Fig. 5 plots the ROC
graphs for the performance of the malware detector with differ-
ent classification algorithms. All five algorithms yield an Area
Under Curve (AUC) above 0.8, indicating good performance.
The RandomForest algorithm achieves the best performance,
although the overall performance of all algorithms are similar.
This result suggests that the PCL-based feature set is not
tailored for a specific algorithm.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

C4.5 (AUC=0.91)
RIPPER (AUC=0.86)
RandomForest (AUC=0.95)
SVM (AUC=0.84)
BayesNet (AUC=0.88)

Fig. 5: ROC curves of different algorithms.

Malware/Goodware Ratio. We investigate in detail how
class imbalance in the constructed dataset threatens the per-
formance of PCL-based malware classification. To this end, we
customize three datasets, composed of 2,400, 3,600 and 4,800
apps with a malware/goodware ratio of 1, 2 and 3 respectively.
We found that the performance decreases (but still with F-
measure above 0.86) with the ratio of malware in the set.
Such a finding was already shown in Allix et al.’s large scale
empirical study with a different feature set [2].

Malware Goodware

0
20

40
60

80
10

0

#.
 o

f L
ea

ks
 p

er
 A

pp

(a) ALL

Malware Goodware
0

10
20

30
40

50

#.
 o

f L
ea

ks
 p

er
 A

pp
(b) PACL

Malware Goodware

0
10

20
30

40

#.
 o

f L
ea

ks
 p

er
 A

pp

(c) PPCL

Malware Goodware

0
5

10
15

20
25

30

#.
 o

f L
ea

ks
 p

er
 A

pp

(d) PBCL

Fig. 4: PCL distribution across Malware and Goodware datasets

�
�

�
�

RQ3:PCLs constitute good features for
discriminating malicious apps from benign apps in a
Machine learning-based malware detection scheme.

V. THREATS TO VALIDITY

We now describe some threats to validity that we have
identified in the course of this study.

Internal Validity. The size of training sets and the pa-
rameters we use (e.g., malware/goodware ratio) take different
values that appear to be unjustified since, as shown in [2],
no survey has determined the appropriate values for malware
detection. However, our results show the same trends of that
shown in [2].

External Validity. The size of the dataset used in the
present study is very small compared to the many millions
of Android applications in existence. Hence, it could be
argued that our dataset has specific characteristics, and that
our experiments would yield different results on other datasets.
To reduce this risk, our dataset was randomly drawn from a
larger dataset whose size is two orders of magnitude bigger.

Furthermore, we show in this paper that sets of apps with
specific traits do indeed yield different results. While having
a representative dataset is of the utmost importance when
claiming experimental results would replicate across various
other datasets (i.e., that all sets of apps would be handled
successfully), it is not necessary in our case where we show
that not all sets of apps are handled as successfully by a
malware detection approach.

Like MUDFLOW, our feature set based on potential com-
ponent leaks is also generated by statically analyzing Android
apps. Since we use the same settings as MUDFLOW use (for
FlowDroid), our results may contain flows that are unfeasible,
as well as miss flows that are feasible. Because our goal of
this study is to determine whether PCLs are good features for
malware detection, and not to prove the presence or absence
of flows, we chose to trade a small amount of precision in
favor of a significant speed gain.

VI. RELATED WORK

In this paper, we have studied the distribution of potential
component leaks, and used this information to detect malicious

apps. This work is related to many existing techniques that
leverage static taint analysis to detect privacy leaks, to detect
malware or to perform empirical study on Android apps.

Information flow analysis. Information flow analysis has
been well studied in Android community to detect vulner-
abilities of Android apps. For instance, FlowDroid [5] per-
forms “context-, flow-, field-, object-sensitive and lifecycle-
aware static taint analysis for Android apps” to detect intra-
component sensitive data flows. Several other works have been
presented to detect inter-component information flows [13],
[14], [16], [25]. For example, IccTA [16] leverages FlowDroid
to perform inter-component static taint analysis through instru-
menting Android apps, reducing an inter-component problem
to an intra-component problems. Other techniques dynamically
analyzes information flows of Android apps. For example,
TaintDroid [10], one of the most sophisticated dynamic taint
tracking system, uses a modified Dalvik virtual machine to
track flows of private data.

In this work, we investigate potential component leaks,
the component-based information flows, which are different
from the above approaches. Our results are generated by our
previous work, PCLeaks, which performs information flow
analysis through the known ICC vulnerabilities (e.g., Activity
Hijacking). CHEX [18] and ContentScope [27] are two other
tools that tackle potential component leaks, however CHEX
limits itself to only considering leaks related to Activity
hijacking while ContentScope only takes into account leaks
related to Content Provider.

Machine learning based malware detection. Recently,
Avdiienko et al. presented an approach [6] closely related
to ours. Both their approach and ours take sensitive data flows
as features for machine learning-based malware detection,
and both rely on FlowDroid to extract sensitive data flows.
However, instead of taking into account all intra-component
leaks, we focus on component-based privacy leaks, the so-
called potential component leaks. Besides, we take into ac-
count SharedPreferences in our study, which has not been
considered in Avdiienko et al. approach. Furthermore, we have
investigated the clustering impact of the training data set,
which at the moment is rarely investigated in the literature.

Allix et al. [2] empirically investigated the assessment of
machine learning-based malware detectors for Android apps
to measure the impact of datasets size and goodware/malware
ratio, and the importance of validation scenarios. Our work
is related in that we also measure the impact of several
parameters and we raise one more factor to take into account
when evaluating a malware detection approach: One specific
approach may perform well only on a subset of Android
applications.

Several other candidate features have been proposed to
classify Android malware by using machine learning. For
example, Peng et al. [22] apply probabilistic learning methods
to the permissions of apps to detect malware. Gascon et al. [12]
make use of embedded call graphs to build a malware detector.
Other approaches [1], [4], [8], [11], [28] that rely on static or
dynamic analysis also provide possible features for malware
detection. Those features, along with the features we studied
in this paper, could be combined to perform more accurate
malware detection.

Empirical study on Android apps. In this work, we have
empirically studied the distribution of potential component
leaks. Empirical study provides a way of gaining knowledge
quantitatively and qualitatively. Li et al. [16] presents an
empirical study on how Intent is used in Android apps,
showing that Intent is commonly used in Android apps.
Ruiz et al. [20] show the prevalence of multiple advertisement
libraries in Android apps. Liu et al. [26] studied on the safety
of storing non-shared data on public storage of Android.
Egele et al. [9] illustrate that 10,327 out of the 11,748 apps
they studied contain at least one mistake in their usage of
cryptographic APIs. Maji et al. [19] perform fuzz testing to
evaluate the robustness of Android ICC mechanism, showing
that exception handling is rarely used and that it is possible
to crash an app at runtime from an unprivileged user process.
Allix et al. [3] perform a forensic analysis of Android apps,
showing evidences that many Android malicious apps are
developed at an industrial scale.

VII. CONCLUSION

In this study, we empirically investigated a new feature
set for Android malware detection. This new feature set is
based on potential component leaks (PCLs), which we define
as sensitive data-flows that involve Android inter-component
communications. We first showed that PCLs are common
in Android apps. Then, further investigation showed that
malicious apps contain significantly more PCLs than benign
apps. Finally, we successfully applied PCLs as features for
machine learning-based malware detection.

ACKNOWLEDGMENTS

This work was supported by the Fonds National de la
Recherche (FNR), Luxembourg, under the project AndroMap
C13/IS/5921289, by the BMBF within EC SPRIDE, by the
Hessian LOEWE excellence initiative within CASED, by
the DFG’s Priority Program 1496 Reliably Secure Software
Systems and the project RUNSECURE.

REFERENCES

[1] Y. Aafer, W. Du, and H. Yin. Droidapiminer: Mining api-level features
for robust malware detection in android. In SecureComm. 2013.

[2] K. Allix, T. F. Bissyandé, Q. Jérome, J. Klein, R. State, and Y. Le Traon.
Empirical assessment of machine learning-based malware detectors for
android. Empirical Software Engineering, 2014.

[3] K. Allix, Q. Jérome, T. F. Bissyandé, J. Klein, R. State, and Y. Le Traon.
A forensic analysis of android malware–how is malware written and how
it could be detected? In COMPSAC, 2014.

[4] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, K. Rieck, and
C. Siemens. Drebin: Effective and explainable detection of android
malware in your pocket. In NDSS, 2014.

[5] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel. Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps. In PLDI, 2014.

[6] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer,
and E. Bodden. Mining apps for abnormal usage of sensitive data. In
ICSE, 2015.

[7] G. Canfora, F. Mercaldo, and C. A. Visaggio. A classifier of malicious
android applications. In ARES, 2013.

[8] S. Chakradeo, B. Reaves, P. Traynor, and W. Enck. Mast: triage for
market-scale mobile malware analysis. In WiSec, 2013.

[9] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel. An empirical
study of cryptographic misuse in android applications. In CCS, 2013.

[10] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. Sheth. Taintdroid: An information-flow tracking system for realtime
privacy monitoring on smartphones. In OSDI, 2010.

[11] Y. Feng, S. Anand, I. Dillig, and A. Aiken. Apposcopy: Semantics-based
detection of android malware through static analysis. In FSE, 2014.

[12] H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck. Structural detection
of android malware using embedded call graphs. In AISec, 2013.

[13] M. I. Gordon, D. Kim, J. Perkins, L. Gilham, N. Nguyen, and M. Rinard.
Information-flow analysis of android applications in droidsafe. 2015.

[14] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer. Android taint
flow analysis for app sets. In SOAP, 2014.

[15] L. Li, K. Allix, L. Daoyuan, A. Bartel, T. F. Bissyandé, and J. Klein.
Potential Component Leaks in Android Apps: An Investigation into a
new Feature Set for Malware Detection. Technical report, 2015.

[16] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. Mcdaniel. IccTA: Detecting
Inter-Component Privacy Leaks in Android Apps. In ICSE, 2015.

[17] L. Li, A. Bartel, J. Klein, and Y. Le Traon. Automatically exploiting
potential component leaks in android applications. In TrustCom, 2014.

[18] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex: statically vetting
android apps for component hijacking vulnerabilities. In CCS, 2012.

[19] A. K. Maji, F. A. Arshad, S. Bagchi, and J. S. Rellermeyer. An empirical
study of the robustness of inter-component communication in android.
In DSN, 2012.

[20] I. Mojica Ruiz, M. Nagappan, B. Adams, T. Berger, S. Dienst, and
A. Hassan. On the relationship between the number of ad libraries in
an android app and its rating. IEEE Software, 2014.

[21] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and
Y. Le Traon. Effective inter-component communication mapping in
android with epicc: An essential step towards holistic security analysis.
In USENIX Security, 2013.

[22] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju, C. Nita-Rotaru,
and I. Molloy. Using probabilistic generative models for ranking risks
of android apps. In CCS, 2012.

[23] S. Rasthofer, S. Arzt, and E. Bodden. A machine-learning approach for
classifying and categorizing android sources and sinks. In NDSS, 2014.

[24] S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos. Management of
an academic hpc cluster: The ul experience. In HPCS, 2014.

[25] F. Wei, S. Roy, X. Ou, and Robby. Amandroid: A precise and general
inter-component data flow analysis framework for security vetting of
android apps. In CCS, 2014.

[26] L. Xiangyu, Z. Zhe, D. Wenrui, L. Zhou, and Z. Kehuan. An Empirical
Study on Android for Saving Non-shared Data on Public Storage. In
IFIP SEC, 2015.

[27] X. J. Yajin Zhou. Detecting passive content leaks and pollution in
android applications. In NDSS, 2013.

[28] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck. AppContext:
Differentiating Malicious and Benign Mobile App Behavior Under
Contexts. In ICSE, 2015.

