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Abstract—Android is an operating system widely deployed
especially on devices such as smartphones. In this paper, we study
the evolution of OpenJDK Java Class Library (JCL) versions
used as the basis of the Dalvik Virtual Machine (DVM) and
the Android Runtime (ART). We also identify vulnerabilities
impacting OpenJDK JCL versions and analyze their impact on
Android. Our results indicate that the complexity of the Android
JCL code imported from OpenJDK increases because: (1) there is
an increase in the number of classes imported from OpenJDK,
(2) there is an increase in the fragmentation of the JCL code
in Android as code is increasingly imported from multiple
OpenJDK versions at the same time, and (3) there is an increase
in the distance between the JCL code in Android and OpenJDK
as, for instance, Android developer introduce customizations
to the imported code. We also observe that most OpenJDK
vulnerabilities (80%) are not impacting Android because the
vulnerable classes are not imported in Android. Nevertheless,
Android does import vulnerable code and little is done to patch
this vulnerable code which is only ”patched” when a newer
version of the vulnerable code is imported. This means that the
code can stay vulnerable in Android for years. Most of the vul-
nerabilities impacting Android (77%) have a security impact on
the availability of the system. By developing a proof-of-concept,
we show that OpenJDK vulnerabilities imported in Android do
have a security impact. We suggest to seriously take into account
public information available about OpenJDK vulnerabilities to
increase the security of the Android development pipeline.

Index Terms—Android, external dependency, vulnerability
management, managing code complexity, Java, OpenJDK, Simi-
larity Analysis, Vulnerabilities, Security

I. INTRODUCTION

The Android operating system is an open source project
which has been scrutinized by researchers on many aspects
such as its permission system [1], [2], [3], [4] or the API
interface between Android and Android applications [5], [6],
[7], [8]. Android applications have access to the application
API which is in short a combination of Android-specific Java
code and to the runtime of the Android operating system
whose upper layers are implemented in Java. This Java code
is compiled to Dalvik bytecode to be executed by either
the Dalvik virtual machine (up to Android 4.4 in 2013), or
Android Runtime (ART)1 which is the default VM since
2013. While everything at runtime is Dalvik, part of the
actual code that is used by the virtual machine is imported
from external Java repositories such as OpenJDK, a free and

1https://source.android.com/docs/core/runtime

open-source implementation of the Java Platform. While it
is well documented that Google has had to handle legal
issues against Oracle regarding licencing the Java API [9],
not much research has been done on understanding how the
Java code surrounding the virtual machine, called Java Class
Library (JCL), or Core Libraries (a.k.a. libcore) in Android,
is actually managed in Android. In this paper, we investigate
Android’s external dependencies on external JCL repositories
and highlight how this code is managed in Android, how it
has evolved, and how upstream Java security vulnerabilities
impact the Android system.

One of the first objectives of the Android Platfom was to
offer immediate compatibility to the standard Java ME” [10].
Because of disagreements with Sun, the company behind
Java which is owned by Oracle since 2010, Google decided
not to use Sun’s implementation of the JVM [11]. Instead,
Google developed a new virtual machine called Dalvik and
use parts – such as files from the OpenJDK – of an open-
source implementation of the Java Virtual Machine called
Harmony, managed by the Apache foundation. The Apache
foundation stopped maintaining Harmony in 2011 because
the main participant, IBM, decided to shift its efforts to
Oracle’s OpenJDK [12]. Therefore, Google maintained the
parts of Harmony they use in Android for the next 5 years.
In 2016, Android reached version 7.0 (codename Nougat) and
the Harmony code it relied on was replaced by OpenJDK’s.
In 2021, efforts started to replace OpenJDK 7 with OpenJDK
11 in Android 13. This simplified view on the evolution of
external dependencies used for the JCL code in Android are
illustrated in Figure 1.

Looking at the code of Android 13 we observed that there
is no simple mapping from a given JCL Java class used
in Android to its corresponding OpenJDK version. In fact,
our analysis reveals that Android 13’s libcore contains Java
classes coming from multiple different OpenJDK versions at
the same time on top of containing Java classes that have been
customized by Google engineers and which are thus unique to
Android. This situation makes it challenging to keep track of
which Java version is used where in the Android code base and
also makes it challenging to maintain the Java code in Android.
Therefore, securing the Android Open Source Project’s Java
Class Library might not be as trivial as updating the JCL
that Android partially imports from external projects. This

https://source.android.com/docs/core/runtime
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Fig. 1: Simplified view of the evolution of the external Java dependencies used by Android, by year and Android version.

could potentially result in having vulnerabilities that are not
patched quickly, or even not patched at all. This translates
to extended exposure windows in comparison to OpenJDK
and unnoticed vulnerabilities. Not all vulnerabilities impacting
OpenJDK have a security impact on Android. For instance,
Android does not rely on OpenJDK’s sandbox mechanisms, so
vulnerabilities to escape the sandbox cannot be used to escape
the Java sandbox in Android because it is not implemented
nor used in Android. On the other hand, if a vulnerability
affecting a cryptographic component of OpenJDK is also used
in Android, it might affect Android applications relying on this
component.

In this paper, we study the evolution of the JCL in Android
and answer to the following questions:

RQ 1. Which OpenJDK versions are used in Android’s
libcore? How much do they diverge from the OpenJDK
upstream? Our results indicate that the complexity of the
Android JCL code imported from OpenJDK increases
because there is an increase: (1) in the number of classes
imported from OpenJDK; (2) in the fragmentation of the
JCL code in Android; and (3) in the distance between the
JCL code in Android and OpenJDK.

RQ 2. How have OpenJDK vulnerabilities been managed
in libcore? We observe that most OpenJDK vulnera-
bilities (80%) do not impact Android. The imported
vulnerabilities are only ”patched” when a newer version
of the vulnerable code is imported. The vulnerable code
can stay present in Android for years.

RQ 3. What is the security impact of OpenJDK CVEs
affecting Android? We observe that most of the vulner-
abilities impacting Android (77%) can have a security
impact on the availability of the system. We develop
a proof-of-concept showing that vulnerabilities can be
reached on Android through the Java API.

To the best of our knowledge, it is the first time that
the impact of OpenJDK’s security on Android is studied.
The full content of data, code and results can be found
at https://github.com/software-engineering-and-security/
AndroidsJCL-SecDev23. The remaining of the paper is
organised as follows. The reader familiar with Java or Dalvik
virtual machines can skip the background Section II. In
Section III, we present the threat model considered in this
paper. In Section IV, we present our methodology. Section V
presents the results and answers to the research questions.
We discuss the limitations of our approach in Section VI. We

present the related work in Section VII. Finally, we conclude
and present the future work in Section VIII.

II. BACKGROUND

In this section, we introduce the concepts used around the
Java environment as well as the terminology used around
the Dalvik environment used in Android and explain how
elements of the Java environment are connected to the Dalvik
environment.

A. Java Code Execution

A Java Virtual Machine (JVM) executes Java programs
whose code is represented by bytecode instructions. The
Java Runtime Environment (JRE) contains the JVM and the
Java Class Library (JCL). The JVM is often represented as
the java binary under Unix systems. The JCL is a set
of core Java classes that are shipped with the JVM and
on which any Java developer can rely when writing code.
Typical examples of JCL classes are java.lang.Object
and java.lang.String. JCL classes are automatically
loaded when the JVM starts and are available to the Java
program. There exist several implementations of the JVM, the
most famous being Oracle’s OpenJDK.

B. Android Code Execution

Android applications are written in Java and compiled
into Dalvik bytecode, a representation very close to the Java
bytecode. There are some differences such as the use of
registers instead of the stack for computations [13]. Dalvik
bytecode was executed by the Dalvik Virtual Machine (DVM)
until Android 5.0. After Android 5.0, the bytecode is executed
by the Android Runtime (ART). In all cases, whether executed
with the DVM or ART, the application code generated from
Java needs to access JCL classes. In Android, JCL classes are
imported from external dependencies such as OpenJDK. In
Android, the Core Java classes, which include the imported
JCL classes, are grouped in a component called libcore. In
this paper, we focus on studying the part of Android’s libcore
that is imported from external JCLs.

III. THREAT MODEL

The JVM has – actually had because it has been removed
since Java version 17 [14] in 2021 – a sandbox mechanisms
called the ”Java sandbox” which could be used to limit the
permissions of untrusted code. For instance, the untrusted
code could run without permission to access the filesystem.
However, many flaws have been identified in this sandbox
mechanisms which made it useless in most of the cases
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because an attacker could bypass the restrictions [15], [16].
Therefore, Android’s security architecture designers decided
not to rely on these mechanisms to restrict the code running
in Android applications. Instead, Android relies on, among
other things, the security mechanisms provided by the Linux
operating system such as user ID and groups to restrict what an
application can do (ex: only applications whose user ID is in
the group CAMERA can use the camera of the device). Hence
the question: do vulnerabilities discovered in the JVM impact
the Android OS and/or Android applications? The answer is
that it depends on the vulnerability.

If the vulnerability is targeted at escaping the Java sandbox,
which Android does not use, then probably that CVE is of no
impact to the security of Android and its applications. Such
attacks also suppose that the target VM executes untrusted
code downloaded from a remote host on the Internet, which
is, to the best of our knowledge, not common for most of
the Android applications. Therefore, we do not consider this
attack vector as important in this paper. On the other hand,
if the vulnerability can be triggered through a Java API, then
it could also impact Android applications that have untrusted
input reaching the vulnerable Java API. A typical example
is a denial of service (DoS) attack for which the attacker
generates a specific payload to send to the vulnerable API to
hang the targeted system. If the JVM is vulnerable to such an
attack, and if all the vulnerable code is also in Android, then
Android applications relying on this vulnerable code could be
impacted. In this particular example with a DoS vulnerability,
the Android application would hang. With a more critical
vulnerability such as remote code execution (RCE), an attacker
could execute arbitrary code as the vulnerable application and
potentially attack other components of the Android system.

IV. METHODOLOGY

This methodology section describes our approach to answer
the different research questions. Note that in the research we
conduct in this paper, we focus on the analysis of OpenJDK
and do not consider Apache Harmony, which has only been
used in Android versions before 2015.

A. RQ1: Which OpenJDK versions are used in Android’s
libcore? How much do they diverge from the OpenJDK up-
stream?

For each Java class JCARi
in libcore for a given Android

version ARi released at date D, we identify JCOPj
in every

OpenJDK version OPj using the Java class Fully Qualified
Name (FQN). We consecutively compute the distance with
JCOPj released before D.

In other words, for each Android Java class that is also
present in OpenJDK, we compute the distances between
versions of the same class across OpenJDK’s history2 and
identify the closest. The signatures of each Java class of
libcore, and of each class of OpenJDK are generated us-
ing tlsh_unittest. This Locally Sensitive Hash gen-
erator [17] computes a digest with a sliding window of 5

2https://www.java.com/releases/fullmatrix/

bytes. It is composed of a 3-byte header and a body. For
the body, each 5 bytes window is used to generate buckets
of 3 bytes, and the population of buckets gives quartiles. Each
bucket, depending on its position w.r.t. the quartiles, provides a
value (00,01,10,11) that, added one after the other, produces
the digest body. A distance can be computed from a digest
to another using a derivative from the Hamming distance.
TLSH has been adopted by Virus Total3 and Malware Bazaar4

as a similarity technique. TLSH is also part of Structure
Threat Information eXpression (STIX) 2.15. Our comparison
provides, for each Java class in Android’s libcore, a closest
OpenJDK origin. It allows us to generate a profile for each
Android version and observe the evolution of the OpenJDK
versions used in Android.

While there is a closest version JCOPj
for each JCARi

,
the distances are different depending on JCARi

and on ARi.
Therefore, we also profile the distances over each version ARi.
In other words, we perform an analysis on the evolution of
distances between classes in Android and OpenJDK for all
Android releases.

B. RQ2: How OpenJDK vulnerabilities have been managed
in libcore?

To be able to answer this question, we need to collect
vulnerabilities (CVEs) affecting OpenJDK and then analyse
libcore’s code to understand if any of these vulnerabilities
are also present in Android and for how long. With this
information, we can compute the window of exposure for
each vulnerability, i.e., the time during which vulnerable
code is present in the Android system. We particularly seek
vulnerabilities that are left unpatched in Android while patched
in OpenJDK, i.e., overexposing Android.

As illustrated in Figure 2, the procedure to identify Java
CVEs present in Android features five steps. In the first
step (CVE collection), we gather the list of CVEs from the
NVD NIST website (through the JSON feeds 6) that affected
any of the aforementioned OpenJDK versions. Some CVEs
affect several OpenJDK versions; hence, we keep track of this
information to later compare patched files with OpenJDK’s
version of the same file. We use the cpe7 field for either
the string oracle:openjdk, or sun:openjdk. We then
collect and sort CVEs and affected platforms. In the second
step (Patch collection), as there is not one single source of
information capable of providing all the patches, we adopt
different strategies.

• We first inspect the Bugzilla web-page related to this
CVE, if it is available, and provides a link to the patch
next to the characteristic Upstream Commit expression.

• Or we try to collect the Bug Id in the description of the
Mitre or NVD’s webpage. We then query the Mercurial

3https://developers.virustotal.com/reference/files-tlsh
4https://bazaar.abuse.ch/api/#tlsh
5https://docs.oasis-open.org/cti/stix/v2.1/os/stix-v2.1-os.html
6https://nvd.nist.gov/vuln/data-feeds
7(Common Platform Enumeration)
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Fig. 2: Steps to identify Java CVEs present in Android and their Lifetime

repository of OpenJDK to collect the hypertext link to
the commit.

• Or we query through a web search engine until we can
retrieve a Bug Id. This last step can require the help of
the WayBack Machine for old OpenJDK CVEs.

A CVE might impact Android if the classes affected by
the patch for the CVE in OpenJDK are present in libcore.
Therefore, in Step 3 (File presence in libcore), we identify
CVEs for which all patched files are also in Android’s libcore.
Note that we only consider filenames at this point, and we do
not yet know if the Java files are patched in Android. From the
commit web page, we collect the list of files modified by the
commit. We retrieve them through the Git history of libcore,
following renaming, up to the introduction of OpenJDK 7 in
libcore. If, for a CVE, not all files match, we discard the
CVE since it cannot impact Android. Once we have CVEs for
which all files are present in libcore, we manually check if
there is any trace of the OpenJDK patch in all the concerned
Android releases. This fourth step (Find patched classes in
libcore) identifies from which Android version an OpenJDK
CVE is patched in libcore and, if so, when. Finally, in Step 5
(Exposure window overhead computation), we compare the
date of the patch in OpenJDK with the date of the patch in
AOSP/libcore to compute the overhead window exposure for
each selected CVEs.

C. RQ3: What is the security impact of OpenJDK CVEs
affecting Android?

We first analyse the set of OpenJDK CVEs impacting
Android and characterise them in terms of attack vector and
impact of security. Then, we report on our discussions with the
Android security team to understand why these vulnerabilities
have not been patched. Finally, we present a proof-of-concept
to exploit a real OpenJDK vulnerability affecting Android to
show that they actually impact the security of the Android
system.

V. RESULTS

A. RQ1: Which OpenJDK versions are used in Android’s
libcore ? How much do they diverge from the OpenJDK
upstream ?

We first look at the origin of Java classes in Android and
determine from which versions of OpenJDK they come from
in Section V-A1. Then, in Section V-A2, we observe how close
the Java classes in Android are to their equivalent classes in
OpenJDK.

1) Mapping between Android Java classes and OpenJDK’s:
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Fig. 3: Number of matched OpenJDK classes per Android
libcore version

a) Decription: Figure 3 presents the evolution of match-
able paths from libcore in available-at-release-time OpenJDK
versions. If the number of classes increases at first, from 1.1k
to 1.9k, it stabilises from Android 10 onward, to slightly
increase in late versions and the master branch, reaching 2048.
Hence, almost doubling since Android 7.

We present in Figure 4, the results of the closest version
of OpenJDK for every libcore class. We select the OpenJDK
versions for which the distance from digest to digest (as
computed by tlsh) is the smallest. Among those OpenJDK
versions with the same distance to the version in libcore , we
select the earliest. We see that Android 7’s and 8’s libcores
provide classes closer to OpenJDK 1.5, 1.6, 1.7 and 1.8.
The proportions of classes in 1.7 and 1.8 increases from one
version to the other, passing from 56,1% to 67,8%. The most
noticeable increase concerns jdk1.8, passing from 25,5% to
42,2%. In Android 9, about one third (32,2%) of the found
JDK classes are closer to the newly available JDK versions:
jdk-9 and jdk-10. The proportion of classes closer to jdk1.5
and jdk1.6 decreases from 44% in Android-7, and 36% in
Android 8 to 25% of the Java classes. The trend is overall
similar in Android 9’s libcore and in Android 10: newly
available versions jdk-11 (Long Time Support, LTS, version)
and jdk-12 are the closest versions for only a low proportion
of Java classes. Overall, Android 12 has a similar profile
to Android 11. In both cases, jdk-14 takes a more signifi-
cant proportion than previously introduced OpenJDK versions
(taken independently). Since Android 13, Java classes based
on latest versions of OpenJDK are more common, underlining
a rejuvenation of Android’s OpenJDK based classes. Versions
succeeding jdk-10 account for around one third (36%) of the
Java classes. OpenJDK-17 is the most represented one among

4



-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

jdk1.5
11%

jdk1.6
32%

jdk1.7
29%

jdk1.8
26%

(a) Android 7.0.0 r1
-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

jdk1.5
9%

jdk1.6
25%

jdk1.7
24%

jdk1.8
40%

(b) Android 8.0.0 r1
-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

jdk1.5
6%

jdk1.6
19%

jdk1.7
16%

jdk1.8
25%

jdk-9
28%

jdk-10
3%

(c) Android 9.0.0 r1
-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

jdk1.5
7%

jdk1.6
19%jdk1.7

16%

jdk1.8
23%

jdk-9
24%

jdk-10
3%

jdk-11
2%

jdk-12
2%

(d) Android 10.0.0 r1

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

jdk1.5
7%

jdk1.6
17%

jdk1.7
14%

jdk1.8
21%

jdk-9
22%

jdk-10 2%
jdk-11 2%

jdk-12 1%
jdk-13 1%

jdk-14
6%

(e) Android 11.0.0 r1
-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

jdk1.5
7%

jdk1.6
17%

jdk1.7
14%

jdk1.8
21%

jdk-9
22%

jdk-10 2%
jdk-11 2%

jdk-12 1%
jdk-13 1%

jdk-14
6%

(f) Android 12.0.0 r1
-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

jdk1.5
7%

jdk1.6
16%

jdk1.7
12%

jdk1.8
16%

jdk-9
21%

jdk-10 3%
jdk-11 4%

jdk-12 1%
jdk-13 1%

jdk-14 6%

jdk-17
7%

jdk-18
1%

(g) Android 13.0.0 r1
-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

jdk1.5
6%

jdk1.6
15%

jdk1.7
11%

jdk1.8
13%

jdk-9
18%

jdk-10 3%

jdk-11 3%
jdk-12 2%jdk-13 1%

jdk-14 6%

jdk-17
10%

jdk-18
2%

jdk-19
3%

(h) master branch

Fig. 4: Representation of the OpenJDK profiles of Android’s libcore over versions

those with 10%.

b) Investigation: In late Android versions, very old
OpenJDK versions still appear, as jdk1.5 and jdk1.6. jdk1.5
represents almost always the same proportion of classes,
regardless of the absolute evolution of Java classes in lib-
core. This partially explains through the selection of the
closest in distance and earliest in release date, version of
OpenJDK, in order to represent Figure 4. Hence, if a Java
class did not change over time, then the distance is the
same when comparing the libcore class. Among the 197
classes that are ever closer to jdk1.5 across Android ver-
sions, 84 are always closer to the 1.5 version of Open-
JDK. Among the most concerned directories, 13 classes are
always closer to jdk1.5 in w3c/dom and 7 classes under
java/lang. For jdk1.6, 521 classes are at some point
computed closer to jdk1.6 and 198 classes are always closer
to jdk1.6. Among the directory, 25 classes are always un-
der jdk1.6 in java/sql, 17 in java/security and 13
under security/cert. For instance, java/security/
BasicPermission.java is the same for all jdk1.8 ver-
sions. java/nio/ch/Groupable.java’s digest has the
same distance with every OpenJDK versions since its in-
troduction in jdk-9. Hence, we select jdk-9 while the latest
version the class was imported from could be jdk-11. Last
example, java/net/CookiePolicy, is equidistant from
every version of OpenJDK since OpenJDK-1.8.0 05.

2) Distances between Android and OpenJDK classes:
In this subsection, we aim to analyse the evolution of the
distances between Java files in libcore from the version they
are the closest to. Figure 5 provides, for each Android version,
the proportion of Java classes that have a distance below 10,
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Fig. 5: Divergence of libcore Java classes from OpenJDK
closest versions

50, 100, 150, 200, and 500 from the closest JDK version of
the same class. We provide a few examples and definitions for
the reader to grasp the concept of a ’distance’ in our context:

• ”a distance score of 0 represents that the files are
identical (or nearly identical)” [17]

• In Android 13, java/math/MutableBigInteger.
java has a distance with jdk-17 of only 1. It corresponds
with 1 small if block (passing from 1 to 6 lines) and 3
altered comment lines over a file of 2.3k lines.

• In Android master version, the file java/sun/
security/x509/AVA.java has a distance of 10
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with its counterpart in jdk-11.0.6. It corresponds to 15
lines changed, 1 section of 11 lines added in Android, 4
shorts blocks of code changed specifically for Android,
and one block of 8 lines commented in Android. This
class contains 1.4k lines.

• Still in master, the Java file java/sun/nio/fs/
AbstractPoller.java has a distance of 50 with
jdk-19. Considerably less alteration can be observed, with
7 lines altered, yet in a file containing 290 lines only.

The darker the Android release related section, the shortest
the distance is between the represented libcore classes and
classes in OpenJDK. For instance, we observe that Android
7 is the version closest to OpenJDK ;it has the most classes
with the shortest distances among all Android versions. This
observation can be explained by the fact that Android 7 is the
version introducing OpenJDK in Android, thus containing few
modifications by Android developers. We further observe that
the distances increase from Android 8 until Android 10, for
which the least Java classes are closer to the closest OpenJDK
version. This also corresponds with the introduction of new
Java classes, as seen in Figure 3. Starting at Android-10 and
up to the latest Android version, we observe that the distances
do not change significantly.

The Java classes with the highest distance from their
closest OpenJDK version are always the same across the
versions of Android. Among these, we find, for instance,
java/lang/invoke/MethodHandle.java or java/
net/URI.java. More surprisingly, in Android 10 java/
lang/String.java is part of this group of classes for
which the closest version is at a distance above 500. This might
be explained by the fact that this class is highly used by Java
programs and that Android developers have made significant
modifications to optimize its code.

By analysing the evolution of the OpenJDK Java Library
Class in Android’s libcore since its introduction, we
observe that (1) there is an increase in the number of
Java classes imported from OpenJDK, (2) there is an
increase in the distances between libcore classes and
OpenJDK’s, and (3) there is an increase in the frag-
mentation of OpenJDK versions used in Android. These
observations highlight an increase of the complexity of
Android’s libcore JCL. This complexity increases the
difficulty to maintain the JCL code in Android and
might also introduce unintended side-effects such as
unforeseen security issues.

B. RQ2: How OpenJDK vulnerabilities have been managed
in libcore?

To help following up the CVE selection process, we have
summarised figures in Table I. From the NVD feeds, we extract
82 CVEs affecting OpenJDK8. Nine of these CVEs impact
OpenJDK17, the latest version, while 73 impact older versions.

8last retreived on March 24th 2023

TABLE I: Summary of the identification of OpenJDK CVEs
concerning files present in Android

CVEs affecting OpenJDK 82 100%
CVEs for which Android contains at least 1 of
the patched files

25 30,5%

CVEs for which Android contains all patched
files (at least once in a version OpenJDK)

18 22%

CVEs for which Android contains all patched
files (in all Android versions with OpenJDK)

16 19,5%

CVEs presenting an exposure overhead in An-
droid’s history

13 15,9%

Patch Collection Bugzilla provides an issue tracker page
for 80 of these vulnerabilities and provides link to the patch
for 54 of them. Recall that we need information about the
patch, since we assume that an OpenJDK vulnerability is
present in Android if all the Java files affected by the patch
are present in Android. We retrieve 7 more fixing-commit
references through the Bug Id contained in the descriptions. It
leaves 21 vulnerabilities for which a patch could not be found.
We manually find the commit for 5 of these CVEs using the
WayBack Machine9, following broken links, to find the bug id
and then the commit hash. 11 CVEs affect a library that we did
not find in libcore (littleCMS, libxml2, pulseaudio, gstreamer,
...). Finally, one CVE is undisclosed, and we cannot reach the
fixing commit for 4 CVEs. In total, we have identified how
66 CVEs are patched in OpenJDK.

File presence in libcore From the 66 CVEs for which the
fixing commit hash could be found, there are 25 CVEs for
which at leas one file impacted by the fixing commit is found
in libcore and 18 CVEs for which all the files impacted by the
fixing commit are present in libcore. Considering that Android
needs to present all files to risk exposure, we continue with
this list of 18 CVEs. For 2 CVEs (CVE-2020-2781 and CVE-
2021-35550), the files (sun/security/ssl) were present
in libcore for Android 7 but have been removed from it in
the following main releases. Thus, these vulnerabilities do not
lead to an over-exposure and we omit them in further steps.

Find patched classes in libcore In total, 16 CVEs for
which all files that need a patch in OpenJDK are present in at
least one version of libcore. These CVEs are from 2020 and
later, hence relatively recent w.r.t. the span of Android major
releases considered (from 2016) and of OpenJDK considered
vulnerabilities. We manually verify when the patch was from
and if the classes in libcore seem patched.

One CVE, namely CVE-2020-2593, presents a partic-
ularity: the area patched in 2019 in the upstream had
been altered in 2017 for libcore, before it was consid-
ered vulnerable in OpenJDK. In detail, with Android 9, the
method isBuiltinStreamHandler appears in java/
net/URL.java. However, Android developers have intro-
duced specific modifications to this file so to better use An-
droid specific protocols. These modifications have ”removed”
the vulnerable parts in the code. Therefore, the exposure
window overhead is nil for this CVE, as seen on Figure 6.

9https://web.archive.org/
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Regarding CVE-2022-21341, the file is closer to OpenJDK1.8,
and the patch correcting it in OpenJDK dates from Septem-
ber 27th 2021. The code of java/io/ObjectInput-
Stream.java reveals however that from Android 9 onward,
a serialisation issue was met, monitored by a specific uni-
tary test ((SerializationStressTest#test 2 writeReplace)) and
addressed already back in 2018 at the exact location that needs
patching. Hence, the vulnerable code portion was already
modified before being introduced in Android. Therefore, there
is no exposure of the vulnerability in Android. The code that
needs to be patched for CVE-2022-21283 is never present in
libcore before Android 13, and is straight modified by the
Android development team for integration in the architecture.
Hence, Android seemingly never contained the portion of the
code vulnerable in OpenJDK, and cannot have been over-
exposed to it.

Exposure window overhead
Figure 6 represents the exposure overhead of known Open-

JDK CVEs that are present in libcore. We represent for these
16 CVEs the duration from the year of the patch in OpenJDK
to the date of the newest Android release that do not present
the vulnerable code anymore. We observe that it has taken at
least 2 years to remove known CVEs from libcore and that
4 of them are not patched in any current release version of
Android but are removed in the master-branch. We also note
that 8 CVEs still are present as unpatched in the master branch
as of May 2023.

To understand if CVEs have been patched or only ”re-
moved” by using a newer version of the impacted Java
files, we look at AOSP’s master Git branch and trace back
the changes of files of concern across Android versions up
to Android 7, the first with OpenJDK. We do not observe
commits specifically removing a CVE, nor commits close to
commits patching CVEs in OpenJDK. On the other hand, we
observe that the Java files impacted by a CVE are updated
to newer versions, mostly for stables releases of OpenJDK 11
(CVE-2021-35561) or 17 (CVE-2020-2803, CVE-2020-2830
and CVE-2022-21340).

Most of the vulnerabilities affecting OpenJDK are not
present in Android because the code is not never fully
imported (80.5%). Nevertheless, it seems that OpenJDK
vulnerabilities are not taken into account in Android in
general and that they are never intentionally patched.
They ”disappear” when a newer OpenJDK version, in
which they are patched, is deployed on the Android
system.

C. RQ3: What is the security impact of OpenJDK CVEs
affecting Android?

Table II lists the 16 CVEs from OpenJDK that we have
identified as being present in at least one Android version. We
observe that 3 CVEs (CVE-2020-2803, CVE-2020-2805 and
CVE-2021-2341) can only be triggered with untrusted code
running in the Java sandbox. First, we assume that it is not

2017 2018 2019 2020 2021 2022 2023

Android Version 8 9 10 11 12 13 master
CVE-2020-2593
CVE-2020-2654
CVE-2020-2659
CVE-2020-2756
CVE-2020-2757
CVE-2020-2803
CVE-2020-2805
CVE-2020-2830
CVE-2021-2161
CVE-2021-2341

CVE-2021-35561
CVE-2022-21248
CVE-2022-21283
CVE-2022-21293
CVE-2022-21340
CVE-2022-21341

Fig. 6: Lifecycle of OpenJDK CVEs present in Android. In
total 13 CVEs impact at least one Android version. 12 CVEs
are still present in the latest Android release 13. 8 CVEs are
still present in the ”master” Git branch of AOSP as of May
2023.

TABLE II: List of OpenJDK CVEs impacting Android. For
each CVE is listed the impact score (between 0 and 10, 10
being the highest security impact), the security impact (C:
confidentiality, I: integrity, A: availability), if the vulnerability
can be triggered from code running in the Java sandbox (Y/N),
if the vulnerability can be triggered from an API (Y/N), if
it requires human intervention (Y/N) and if it impacts the
latest Android release (Y/N). The rows with a gray background
represent CVEs which can be triggered through the Java API
in Android.

CVE Score /10 Security Impact Sandbox API
CVE-2020-2593 4.8 CI Y Y
CVE-2020-2654 3.7 A Y Y
CVE-2020-2659 3.7 A Y Y
CVE-2020-2756 3.7 A Y Y
CVE-2020-2757 3.7 A Y Y
CVE-2020-2803 8.3 CIA Y N
CVE-2020-2805 8.3 CIA Y N
CVE-2020-2830 5.3 A Y Y
CVE-2021-2161 5.9 I Y Y
CVE-2021-2341 3.1 C Y N
CVE-2021-35561 5.3 A Y Y
CVE-2022-21248 3.7 I Y Y
CVE-2022-21283 5.3 A Y Y
CVE-2022-21293 5.3 A Y Y
CVE-2022-21340 5.3 A Y Y
CVE-2022-21341 5.3 A Y Y
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realistic for an attacker to exploit them in Android since the
Java sandbox is not used. Second, we do not consider them
since they do not fit within our threat model (see Section III).

For the remaining 13 CVEs, 10 (77%) have an impact on
availability, 3 (27%) on integrity, and 1 (7%) on confiden-
tiality. This observation means that for most vulnerabilities, a
potential attacker can only have an impact on the availability
of the Android application or system. In practice, this could
result, for instance, in an Android component or application
not responding to user input.

We reported the list of known OpenJDK vulnerabilities that
we have identified to impact Android libcore to the Android
security team. To our surprise, these known vulnerabilities
were classified by the security team as ”not an issue”. The
reasoning behind this classification is the lack of proof-
of-concepts (PoCs) to show that the known vulnerabilities
actually have a security impact on the Android system.

Reverse engineering CVEs to produce PoCs can be very
challenging and time consuming. Nevertheless, we decided to
reverse engineer one CVE to show that our assumption that ”if
all Java files impacted by a CVE in OpenJDK are present in
Android then the vulnerability can be exploited in Android”
holds. We successfully developed an exploit for CVE-2022-
21340 and packaged the code in an Android application.
Executing the Android application with the untrusted input
triggering the vulnerability through the Java API results in
the Android application being unresponsive. Thus, it clearly
shows that the vulnerability does have a security impact in
Android; in this case an impact on the availability of the
Android application. This confirms our hypothesis and shows
that known OpenJDK CVEs can impact the security of the
Android system and that they should be considered in the
Android development pipeline. The PoC has been sent to the
Android security team and is currently under analysis.

A majority of OpenJDK vulnerabilities affecting An-
droid (77%) can have a security impact on the avail-
ability of Android OS components or applications. We
have demonstrated that this observation is not only theo-
retical and that OpenJDK vulnerabilities can have a real
security impact on the Android system by developing a
proof-of-concept exploiting an OpenJDK vulnerability
in Android. Known OpenJDK vulnerabilities should
be taken into account in the development pipeline of
Android and patched as soon as possible.

VI. DISCUSSION

A. Delay for Integration of newest Java versions in libcore

When libcore changed from Apache Harmony to OpenJDK,
in 2016, version 8 LTS (Long Term Support) had already been
released for over 2 years, and Android 7, the latest LTS at that
stage, for 5 years. Unsurprisingly, these versions are selected
as the closest version for more than half of the classes in both
Android 7 and 8. We can however note that certain classes
and features of Java 8 are not supported by Android as, for

the APIs available to Android Applications, Google needed to
desugar10 those. Hence, only by 201711 these features were
properly available in all Android API, by switching jack for
javac.

Android started to adopt the next LTS version, OpenJDK-
11, with even more delay. While it was generally available
in 2018, jdk 11 represents only 4% of the classes in the
following-year’s libcore (Android 10). They represent only
10% in Android 11 and 12, to double in Android 13. Also,
only Android 13, 5 years after release, provides a desugared
support for Java 11 to applications through APIs12.

The latest available LTS version, OpenJDK 17, is the closest
to already 8% of Android 13’s classes, one year after its 2021
release. And in April 2023’s master branch, classes closer to
version 17 and latests almost double to 15%.

Aside from the struggle to have to re-implement desugared
support in order to provide latest support to applications,
another aspect might explain the rejuvenation in Android 13
and in the master branch: the end of Active Support for older
versions. For Java SE, from which OpenJDK inherits, Java 8’s
Active Support ended in 2022, and Java 11’s Active Support
ends in September 202313. Further Java 11’s Security Updates
aim to end in 2026, with Java 17’s Active Support. The before-
Android 13 adoption rate of latest versions is not suggesting
that OpenJDK 17, and later ones, would have by then been a
sufficiently adopted in libcore. Therefore, Android could have
been soon without Active Support nor even security updates
for Java code its Runtime uses. Android would have then been
in a similar position as to when support ended for Apache
Harmony.

B. Android Expected Upstream

This will to catch the train of Java releases can be found
in the Source Code of Android. In October 2021 and under
libcore, an EXPECTED USPTREAM file appeared. This file
lists matching paths for Android 13 onward with OpenJDK 14.
This file creates a straight link from the upstream OpenJDK
version from which a file is extracted, and surrounding tools
enable its automatic update in Libcore. Hence the develop-
ment of Android is automating the reduction of the delay
between available OpenJDK releases and helps Android be
ready for arriving ends of support. For instance, the first java
class to follow Openjdk17 was added in February 202215This
does not invalid tlsh results as manual inspection provides,
for instance, a distance of 1 from libcore’s java/math/
MutableBigInteger.java with OpenJDK-17, while the
the same file has a distance of 2 with OpenJDK-11, version
cited in EXPECTED UPSTREAM. The modifications be-
tween versions 11 and 17 concern 3 if and for small blocks,

10Removal of syntactic language simplifications [18]
11https://www.youtube.com/watch?v=LhaSi6 i2bo
12https://developer.android.com/studio/write/java11-default-support-table
13https://www.oracle.com/java/technologies/java-se-support-roadmap.html
14Available only for Android 13 and the master branch, our approach

differentiates by matching the paths for all versions of Android, and follows
name changes.

15Commit:9d2e868
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below 11 lines each and a few comment lines. Libcore’s
version only differentiates from the OpenJDK-17 by one 6-
line block and 3 comment lines while differentiating from
OpenJDK-11 by 2 blocks, including a 11 lines one, and by
2 comment lines. Hence, the libcore version appears, to that
regard, closer to the version selected by tlsh.

C. Android improvements

Google presents in recent year a noticeable push in reducing
vulnerability windows of exposure overhead in the whole
Android software stack with Projects Treble [19], Main-
line [20], and Android Common Kernels(ACK)[21]. Project
Treble, since Android 8, primarily splits the Android OS
stack from handset’s hardware exploitation code and modu-
larizes Android. Thus, updating Android does not require to
recompile it with all the vendors code (hardware and UI).
Project Mainline takes advantage of this modularization to
implement Over-The-Air (OTA) per-module updates. Modules
like the Runtime Module, that gathers the ART and libcore,
are updated in the format of an apk-like file (called APEX)
through the PlayStore16. In those two cases, the window of
exposure is reduced from the Android Source code to the
download on user’s handset. Finally, ACK provides Generic
Kernel Images and better aims (as for libcore and OpenJDK)
to, both, keep track with releases pace in the upstream and
directly benefit from their security patches. Strengthening this
link between the upstream library has, for the least, two
security benefits. It first enables to considerably reduce the
effort to correct vulnerabilities: the source code of the project
can directly inherit from the issue correction from the library
itself. The automation of the update also reduces the risk of
overexposing the code to a vulnerability publicly released in
the library.

D. Threats to validity

TLSH tool: Our analysis relies on the results provided by the
tlsh tool. The tool provides a combination of advantages that
enabled its broad adoption for similarity analyses. However
the computation of a digest makes complex the explanation of
distances comparisons. Furthermore, the documentation [17]
indicates that the evolution of the distance by increasing the
number of mutations is not a bijection. For example, if a file
F is close to two others G and H , the closest file to F might
have a slightly higher distance.

Set of vulnerabilities: In Section IV-B, we do not consider
a vulnerability if its patch impacts one or more files that we
do not find in Android’s libcore. Verifying that Android can
be exploited through those partial exposure can be addressed
in futur work.

VII. RELATED WORK

A. Java

Java is an object-oriented programming language that pro-
vides different studied features such as reflection [22], seri-
alisation [23], exception handling [24], or, again, an always

16https://source.android.com/docs/core/ota/modular-system/art

improved garbage collector [25]. Java also provides a list
of APIs, that tend to break regularly [26], when changes or
updates in those APIs infer bugs in codes that call their former
form.

The Java Security Model (JSM) is extensively presented in
an article that also presents the specific weaknesses Java is
more prone to [15]. The security model includes an Access
Control architecture that Java developers more often question
the community about, better than misusing it [27]. Yet, even
with the Security Manager enabled, and claims to provide
type safety [28], some vulnerabilities, like CVE-2018-2826,
are found, enabling to disable the Security Manager through
type confusion. Deserialization, the principle to get back the
former state of a Java program after it was saved into a
stream of bytes, also allows the execution of gadgets from
the Java Class Library through the acceptance of untrusted
Data [29]. The aforementioned article [15] exposes Java’s
weakness profile through 87 publicly available exploits. Most
of which enable the ”Unauthorized use of restricted class”,
”Loading of arbitrary classes” and ”Unauth. definition of
privil. classes”. Some involve design weaknesses, requiring
proper redesign. Otherwise, single step exploits can still be
combined to gain further privileges, and expand their impact
on the system. Another aspect of the JSM regards information
hiding: preventing the access to some of the system’s private
variables or methods. Exposed to some extents in [15], a
lightweight, measure could reside in isolating these in a black
box, using tokens, and would already block 84% of the tested
exploits for a 2% overhead [30]. Other, heavyweight measures
are discussed, as adding a critical status to some fields
and methods, or adding runtime and compile time verification
routines.

The Runtime Environment executing the Java bytecode is
another exposed component. To reveal its bugs and weak-
nesses, researchers implemented techniques to generate, mu-
tate, and then execute Java bytecode. Yang et al. [31] suc-
cessfully generated a program from existing test cases for
IBM’s J9 with bytecode deactivating the Security Manager.
Bonnaventure et al. [32] generate Java programs from scratch
to trigger type confusion vulnerabilities in the JVM.

B. Android

As mentioned in [10], Android Applications are designed
to be developed in Java. In 2017, Google introduced, and
since pushes17, for writing, the applications using Kotlin18,
a programming language co-founded with Jet Brains. This
language aims to provide a simpler syntax, yet compatible
with the Java bytecode and the JVM, and to be attractive,
better-coupling with Android [33], [34], [35]. If it seems to
reduce the emergence of CWE-710: Improper Adherence to
Coding Standards, Kotlin may also induce more CWE-664:
Improper Control of a Resource through its Lifetime [36].
Android APIs provide the possibility to call and execute,

17https://developer.android.com/kotlin/first
18https://kotlinlang.org/
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in applications, lower-level, faster-executed [37] code and
features (like C or C++, gdb, and since LLDB with the Clang
change19) through the Native Development Kit(NDK). Native
code of one application that is, to some extents, exposed and
reachable by other applications through Direct Inter-app Code
Invocation [38].

It is also through Java code that Services and Features are
provided to applications in the Android Framework. Toolbox
of methods available to the developers to provide user-friendly
and resourceful applications. Developers can easily access to
the phones camera, bluetooth, run services in the background
in a documented way20. The use of these APIs is, nonetheless,
not a guarantee of code quality. In versions up to Android
Honeycomb, it was proven that the use of Android APIs was
usually correlated with a higher frequency of defaults fixing
commits[39]. Letting the authors wonder if it is because the
platform is difficult to use. In another work, the hypothesis
is that some APIs are silently modified[40], or changes too
often[41].

A review of Android’s Security by Google developers was
published in 2021 [42]. Up to Android API-level 28 (9.x), they
describe the Android security ecosystem. Authors specifically
focus on the different access control systems implemented
in Android. It is split in three different categories: Android
Permissions, Unix Access Control and SELinux Access Con-
trol. The higher layers follow a Discretionary Access Policy
control based on permissions. Applications reference these
permissions (camera access, fine or coarse geo-location) they
claim to need in a Manifest.xml file. The system will check,
upon request, if the supplicant (e.g., API call, Content Provider
or Intent) holds the appropriate permissions. This permissions
system has been criticised for its scarce, incomplete or inaccu-
rate documentation [43], [44]. Its hierarchy has been therefore
improved and clarified (API-level 1721). Permissions can since
be granted at runtime, revocable and individualised (API-level
24). The Unix Access Control differs from usual User-ID
attribution as each process is provided with a different UID,
rather than being granted the user’s UID and permissions.
Since API-level 18 Security Enhanced Linux (SELinux) further
protects components with a Mandatory Access Control [45],
[42]. It was released coincidentally with criticism about the
lack of control over the kernel calls [46]. It concerned at first
only four processes: installd(installation daemon), netd
(network connectivity daemon), vold (volume events dae-
mon) and zygote (process creation). Soon it was expanded
to all userspace (API-level 21), tightened up (API-level 25) and
available for SOCs vendor to write their own further restric-
tive specific rules(API-level 26). A comprehensive study on
software aging across Android versions and vendors demon-
strates a constant aging trend of Android Applications [47].
It affects all studied vendors, though more significantly those
customising the OS. One particular element correlated with

19https://developer.android.com/ndk/downloads/revision history
20https://developer.android.com/docs/
21Section Security Changes: https://developer.android.com/about/versions/

jelly-bean#android-4.2

aging is the utilisation by Applications of the System Server,
and specifically the Garbage Collector.

The switch from Dalvik to ART broke tools [48] en-
abling applications monitoring, static and dynamic analysis.
ARTist [49] overcomes the change from .dex to .oat files
by inserting steps in the optimisation step of the dex2oat
compiler. Deployed through an application with root access
to lure the system into using the modified dex2oat, it is then
possible to monitor applications through the ART, discriminate
third-party libraries behaviours in apps [50], and dynami-
cally analyse Android system servers’ system [51]. Regarding
Android internals, a fuzzing approach, namely FANS [52],
already provides insights on Android Native Services. The tool
gathers the AIDL interface declaration and provides inputs that
shall violate the documented restrictions over native calls. The
dynamic analysis mentioned above [51] uses other fuzzing
tools on 2k APIs for over 5minutes each: Chizpurfle [53],
AFL [54] and RandFuzz [55]. Their result confirm and en-
hance previous APIs’ permission mappings [4], [56]

The literature agrees that the optimal conditions for the
public release of a vulnerability are met when the vendor
considers the cost of its clients as its own [57], [58]. It is what
Google has been doing, isolating Android from the Original
Vendor Manufacturers hardware and middleware, with project
Treble [42]. Investing resources to make the Android Stack to
update independently from the Architecture. Google pushed
this logic further with the Generic Kernel Image production.
There is a Linux core and shared bulk for which vendor make
their own services. These services link Android to the different
elements of the Architecture and are to be maintained by the
vendor. Google, to deliver updates, does not have to wait for
the vendor latest version, to build a complete new image, and
can directly feed its update at its own pace. An extensive
cross-platform analysis of security patches in 682 open-source
projects [59] computes that half of the vulnerabilities lifespan
exceeds 14 months in their respective projects. If authors
could not find a correlation between severity and lifespan,
they still provide that the average lifespan is 5 years and
that 6.5% of the vulnerabilities are present for less than 10
days. Over a single version, as for Debian Wheezy [60], an
analysis shows no maturity of a LTS version. Back to Android,
regarding its Linux kernel and Qualcomm components, these
are usually exposed for one complete month more between the
moment a patch is made available and before the update can
reach a phone [61]. Those analyses can heavily benefit from
tools permitting the generation of vulnerability datasets like
data7 [62]. Data7 gathers CVE related intel from the NIST’s
NVD website, and another resource to generate one single
database.

VIII. CONCLUSION AND FUTURE WORK

In this work, we have studied how the Android system
implements and maintains the JCL and what the security impli-
cations are. Our observations are that Android mostly relies on
the OpenJDK external dependency for its JCL implementation.
The complexity of the Android JCL implementation increases
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over time, because of the increase in the number of OpenJDK
classes imported in Android, the fragmentation in terms of
number of different OpenJDK versions used in Android, and
the increase in the distance to OpenJDK’s JCL classes. At
the moment, OpenJDK vulnerabilities which make their way
into the Android code base are not actively patched. Most of
them affect the availability of the Android system. We show
that they can be exploited by developing a proof-of-concept.
We highlight that public information such as OpenJDK CVEs
should be taken into account in the Android development
pipeline to reduce the number of vulnerabilities imported in
Android from external dependencies.

In future work, we plan to investigate the security impact
of the fragmentation of the OpenJDK versions in Android and
to understand the divergence between OpenJDK and Android.
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