
Lessons Learned and Challenges of Deploying
Control Flow Integrity in Complex Software: the

Case of OpenJDK’s Java Virtual Machine
Sabine Houy

Umeå University
Umeå, Sweden

sabine.houy@cs.umu.se

Alexandre Bartel
Umeå University
Umeå, Sweden

alexandre.bartel@cs.umu.se

Abstract—This research explores integrating LLVM’s Control
Flow Integrity (CFI) into the OpenJDK Java Virtual Machine
(JVM) to mitigate memory corruption vulnerabilities. We present
a manual approach to CFI integration that offers a solution
applicable to various real-world projects. Using the DaCapo
benchmark suite, we conduct a thorough performance evaluation
of the CFI-integrated JVM version. Our work reveals that
introducing CFI results in an average performance overhead
of approximately 11.5% and a 34% increase in binary size.
Remarkably, we identify specific CFI subcategories that, when
implemented individually, induce performance improvements for
the JVM. This finding highlights CFI’s potential to enhance
security and performance in Java and general applications.
Our research advances the understanding of CFI integration
in complex software such as the JVM, shedding light on the
challenges and opportunities in securing software systems against
memory corruption attacks.

Index Terms—cfi, jvm, control flow integrity, memory corrup-
tion, C/C++ vulnerabilities, security methodology

I. INTRODUCTION

Today, Java is one of the top programming languages and is
used to write popular applications from development environ-
ments to reverse engineering tools and games. These include
Ghidra, a reverse engineering framework from the NSA 1, the
Eclipse Integrated Development Environment 2, the Minecraft
game 3, and most mobile applications for Android, such as
Netflix4. Java is considered a memory-safe language because
Java applications do not directly manage or have direct access
to memory. However, Java applications are executed with the
help of the Java Virtual Machine (JVM), which is mainly
written in C and C++. Therefore, the JVM is also susceptible
to vulnerabilities affecting C/C++. As C and C++ are memory-
unsafe languages, memory corruption is one of the most
common vulnerability types. A successfully exploited memory
corruption vulnerability can allow an attacker to gain control
over a program’s control flow and, thereby, control over the

1https://github.com/NationalSecurityAgency/ghidra
2https://github.com/eclipse-platform/eclipse.platform
3https://www.minecraft.net/en-us/article/programmers-play-minecrafts-

inner-workings
4https://netflix.github.io/

entire system [1]. These attacks are also known as control-
flow hijacking attacks, as the attacker can redirect a program’s
expected execution to an unintended function or code segment.

Despite decades of research, memory corruption vulner-
abilities remain among the most critical and challenging.
Memory corruption vulnerability is an umbrella term encom-
passing various software vulnerabilities, including stack and
heap buffer overflows and use-after-free. MITRE, a not-for-
profit corporation, publishes several rankings every year. One
of these lists is part of the CWE (Common Weaknesses
Enumeration) Rankings [2] and summarizes the most severe
Known Exploited Vulnerabilities (KEV) [3]. The top three
KEVs in 2023 are part of the memory corruption vulnerability
family, highlighting the ongoing need for research in this area,
and number one in the “2023 CWE Top 25 Most Dangerous
Software Weaknesses” ranking [4], highlighting the urgent
need for further research.

Over the years, extensive research has yielded a plethora of
mitigation techniques. These are usually applied in combina-
tion in systems to achieve the highest possible level of security.
Mitigation techniques such as ASLR (Address Space Layout
Randomization) or the non-executable stack are deployed at
the operating system level and do not modify the code of ap-
plications. Nowadays, they are present by default in all major
operating systems, such as Windows, Ubuntu, Android, and
iOS. In recent years, an effort has been made to complement
these mechanisms through program-based techniques, which
modify applications to inject security mechanisms executed at
runtime within the application. One of the most promising and
effective of them is Control Flow Integrity (CFI).

CFI is injected into the application by the compiler, and
its code is executed at runtime. During compilation, the
compiler generates a program’s control-flow graph (CFG) and
identifies all indirect branching and cast instructions that could
potentially be vulnerable. These instructions include indirect
calls or jumps of virtual or non-virtual functions or bad casts. It
then identifies all call or jump targets with the same signature.
A signature consists of a function or destination’s return and
parameter types. All destinations with the same signature are
grouped together. The code verifying that the target has the

https://github.com/NationalSecurityAgency/ghidra
https://github.com/eclipse-platform/eclipse.platform
https://www.minecraft.net/en-us/article/programmers-play-minecrafts-inner-workings
https://www.minecraft.net/en-us/article/programmers-play-minecrafts-inner-workings
https://netflix.github.io/

same signature as the intended destination based on the CFG
is injected during compilation and executed during runtime
before an indirect branching is executed.

The fundamental theoretical idea of CFI was first mentioned
in a 2005 paper by Abadi et al. [5], which was revised
and republished in 2009 [6]. Designing and implementing
a deployable version of control flow integrity took several
approaches and multiple years [7]–[10]. The critical factor
that caused it to take this long to create a customizable
version was the introduced performance overhead. Indeed,
Wang et al.’s [8] implementation of CFI published in 2015
has a runtime overhead of almost 30% [11], while today’s
implementation’s performance overhead is between less than
1% and at most 15% [12]. In 2015, Tice et al. [13] introduced
CFI to two standard compilers for C and C++ from the GNU
Project (GCC) and LLVM (Clang). While GCC implements
CFI as virtual-table-verification with very limited customizable
options [14], LLVM provides seven different sub-variants of
Control Flow Integrity and the option to use an ignore list
to exclude only specific files or functions that should not be
compiled with CFI [12]. Moreover, Xu et al. [15] evaluated
the compatibility of different CFI implementations, including
Clang’s and GCC’s, and concluded that Clang’s CFI has the
best compatibility. Compatibility, in this context, refers to
CFI’s ability to work effectively with various types of software
without disrupting execution or degrading performance. This
may be why most software developers have decided to use
Clang as their compiler. For instance, Android switched from
GCC to Clang over time (Android 7/8) [16] and ended support
for GCC in 2020 [17]. Around the same time, they started
incorporating CFI into their operating system [18].

However, the practical integration of CFI is highly challeng-
ing. Android had to make some changes to Clang’s implemen-
tation before they could use it in their operating system [19].
Due to the nature of CFI, a program’s functionality can be
broken – resulting in the program not working anymore –
if it is not 100% CFI compatible. This results in a trade-
off between security and usability. The Chromium Project,
therefore, only deploys two variants of the seven available in
Chrome for Linux systems [20]. Mozilla has been looking for
a CFI integration for over ten years and is currently building
Firefox completely without CFI [21]. So far, there is no clear
documentation on the challenges of deploying CFI in real
applications. This work aims to shed light on the missing
information.

The above examples exhibit the significant challenges in im-
plementing control-flow integrity in real-world projects. Since
many real-world and widely used programs and projects are
primarily written in memory-unsafe languages (C/C++), CFI
should be more widely deployed to protect against memory
corruption vulnerabilities. One of these widely used projects
is the Java Virtual Machine, which, as mentioned above, is
mainly written in C and C++. Previous work has shown that, as
for other large C/C++ projects, exploitable memory corruption
vulnerabilities do exist in the JVM [22].

To better understand and characterize the difficulties of CFI

integration in a large software project, we provide a manual
methodology and apply it to deploy CFI to the JVM of
OpenJDK5, called HotSpot6. OpenJDK is an open-source im-
plementation of the Java Platform and, thus, offers access to its
source code. The availability of the source code is essential to
introducing CFI as it is a compiler-based mitigation technique.
After successfully introducing control flow integrity to the
JVM (CFI-JVM), we evaluate the results of excluded files that
would otherwise break the functionality. Moreover, we assess
the performance of CFI-JVM using the DaCapo benchmark
suit [23]. Hence, we provide the following contributions:

1) A manual methodology to deploy CFI in a large software
project such as the JVM.

2) The application of the methodology to deploy CFI
in OpenJDK’s JVM (version 21) and compile it with
LLVM’s implementation of Control Flow Integrity (CFI-
JVM). The binary size overhead is 34.25%.

3) A performance evaluation of the CFI-integrated JVM
based on the DaCapo benchmark suit. The results show
that the JVM works on the DaCapo benchmarks with
CFI. However, an average performance overhead of
11.47% is introduced. Surprisingly, specific individual
CFI variants can increase the performance.

The remainder of the paper is structured as follows: In
Section II, we provide the necessary background on Control
Flow Integrity (II-A) and the Java Virtual Machine (II-B).
Afterward, we present our manual approach to introducing
CFI into the JVM (Section III), followed by our results
in Section IV. We then discuss our results in Section V,
including our main takeaways. In Section VI, we outline the
related literature. Lastly, we summarize our approach and main
findings in Section VII.

II. BACKGROUND

In Section II-A, we provide an overview of Control Flow
Integrity (CFI) and its essential concepts. Section II-B shifts
the focus to the JVM, discussing necessary information in the
context of memory corruption vulnerabilities.

A. Control Flow Integrity (CFI)

Control Flow Integrity (CFI) is a mitigation technique tai-
lored to protect systems against control-flow hijacking attacks
that are based on a memory corruption vulnerability. Although
not all memory corruption vulnerabilities are exploitable, the
impact on a system in the event of an exploitable vulnerability
is critical. Many vulnerabilities go entirely unnoticed by users,
as they do not visibly affect the program’s control flow
and, thus, its functionality from the user’s perspective. If
the vulnerabilities are nevertheless visible to the user, this
is usually because they “only” cause the program to crash.
However, an attacker might be able to write or use an exploit
for the vulnerability to gain complete control of the system,
possibly resulting in remote code execution (RCE). Due to the

5https://openjdk.org/
6https://openjdk.org/groups/hotspot/

https://openjdk.org/
https://openjdk.org/groups/hotspot/

severe repercussions, protecting systems against control-flow
hijacking attacks is essential. The name originates from an
attacker taking over the intended control flow of the execution
and deriving it according to their goals. As mitigation tech-
niques cannot entirely prevent such exploits, it is generally
recommended to combine and stack multiple techniques to
make a system as secure as possible. In the context of memory
corruption vulnerabilities and control-flow hijacking attacks,
techniques such as ASLR, non-executable stacks, and stack
canaries are commonly deployed simultaneously. In addition,
Control Flow Integrity is known to be one of the most effective
techniques [24]. Therefore, over the years, efforts have been
made to add CFI to applications such as the Chrome browser
or operating systems like Android and Windows.

Multiple implementations have been proposed since the
formal introduction of CFI in 2005 [5]. However, barely
any of them could establish themselves due to performance
difficulties, e.g., up to 30% [8], [11], and lack of real-world
implementations. The primary implementations are based on
the publication by Tice et al. [13], providing the fundamentals
to integrate CFI into GCC and LLVM compilers. For the
LLVM compiler, Clang, the introduced overheads are less than
1% up to 15% in the Chromium binary [12]. Microsoft’s im-
plementation [25] uses a similar approach to LLVM Clang’s.
Since we rely on LLVM for the experiments, we explain
CFI’s functionality based on LLVM’s implementation. CFI
can be divided into forward- and backward-edge enforcement.
Backward-edge protects function returns using a so-called
ShadowCallStack. However, the backward-edge enforcement
is not widely supported as its implementation only exists for
ARM-based systems since LLVM had to remove it for x86 64
systems due to security issues caused by race conditions and
critical performance overheads [26].

Forward-edge CFI protects indirect and virtual calls. For the
simplicity of the paper, we will refer to forward-edge CFI as
CFI. In general, CFI is introduced during a program’s com-
pilation process. First, the compiler (Clang) statically builds
the whole program’s Control Flow Graph (CFG). This CFG
represents all expected possible execution paths. In the second
step, Clang identifies potentially vulnerable code parts, i.e., all
indirect branchings such as indirect jumps or virtual calls. It
then generates equivalence sets of functions or jump targets
with the same signatures. The signatures are based on the
return and parameter types. By that, a set of legitimate call and
jump targets is created. Additional code is introduced before
each potentially vulnerable branching instruction, verifying
that the destination of the indirect or virtual call is in the deter-
mined set of legitimate targets. Figure 1 illustrates a simplified
version of this approach. rax contains the address of the to-
be-called function. The verification signature is loaded into
rcx, then the contents of rax and rcx are compared. If they
are the same, the execution proceeds normally. Otherwise, the
program crashes using the ud2 instruction. Beyond covering
function calls and jumps, the LLVM CFI implementation
extends its protection to avert bad type casts. By validating that
only proper casts occur—such as disallowing casts between

Fig. 1. CFI control flow example

unrelated classes—CFI mitigates type confusion attacks.
The following describes the different CFI schemes provided

by LLVM’s implementation. All seven schemes are enabled
when simply using the “fsanitize=cfi” flag [12].

1) cfi-cast-strict: It checks that an object of a base
class is not cast to a derived class if the derived class has the
same layout and virtual function semantics as the to-be-cast
base class. This is the case if the base class is the only non-
virtual base class to the derived class and the derived class
does not define any additional virtual member functions or
fields or override existing ones. The only declaration allowed
is a virtual instructor.

2) cfi-derived-cast: It is not directly part of the
initial idea of Control Flow Integrity. Still, it can also lead
to memory corruption vulnerabilities and is thus included in
the CFI implementation of Clang. Its purpose is to check that a
pointer’s cast is only made to an object of the correct dynamic
type. This means that “the dynamic type of the object must be
a derived class of the pointee type of the cast” [12]. It handles
casts from a base class to a derived class. The C++ standard
defines a bad cast of this type as undefined behavior.

3) cfi-unrelated-cast: Just as II-A2, it is also part
of bad cast checking and not initially proposed CFI. It verifies
that no bad cast from a pointer of type void* or another
unrelated type, e.g., not derived, is performed. Usually, a bad
cast of this type is handled automatically, and the pointer is
cast back to its original type. However, this is impossible
if the pointer is uninitialized or defined as static_cast.
Sometimes, bad casts cannot be prevented and must conform
to an external API, e.g., using a member function of a standard
library.

4) cfi-nvcall: This scheme ensures that object-based
non-virtual calls have the correct dynamic type. The type is
considered correct if the dynamic type of the callee object is
a derived class of the static type of the callee object.

5) cfi-vcall: This CFI variant verifies that the virtual
pointer (vptr) used for virtual calls has the correct dynamic
type. The definition of a correct type is the same as for II-A4.

6) cfi-icall: This option ascertains that function calls
only occur using a function of the appropriate dynamic type,
meaning the function’s dynamic type should correspond to the
static type utilized during the call.

7) cfi-mfcall: The object used for indirect calls uti-
lizing a member function pointer must have the correct dy-
namic type. The dynamic type is correct if the type of the
member function referenced by the member function pointer
aligns with the function pointer component. Additionally,
the member function’s class type must correspond to the
member function’s base type. For simplicity, we omit the
option -fcomplete-member-pointers, which enables
non-conforming language extensions requiring the member
pointer base types to be complete.

If one of the above schemes cannot be applied correctly,
meaning is not successfully validated during runtime, a CFI
violation is detected, and the program terminates. This can
be prevented by removing specific files or functions from the
CFI introduction and compiling them without CFI protection
by adding them to the so-called ignorelist.

B. Java Virtual Machine (JVM)

The Java platform is widely used on servers, desktops,
mobile phones, etc. The platform can generally be divided
into two main components: (i) the Java Virtual Machine
(JVM) written in C/C++, and (ii) the Java Class Library
(JCL) written in Java. The second one is not of interest
for this paper. The JVM is the heart of the Java platform,
supplying the fundamental execution functionalities, which
include the bytecode parser, interpreter, just-in-time compiler,
and garbage collector. Its code is primarily located in the
shared library libjvm.so (25.4MB in size) and is loaded by
the java executable. In total, the code consists of 3955 classes,
resulting in approximately 511K lines of code. The JVM takes
Java bytecode as input. This bytecode can be untrusted, such
as when running a potentially malicious Java plugin within
Ghidra. Ghidra7 is a software reverse engineering tool that
relies on the JVM to execute its plugins [27]. This reliance
means that untrusted bytecode could pose a security risk within
the Ghidra environment. In this case, the applet functions as
the exploit payload, so the attacker’s crafted input exploits
the vulnerability and possibly leads to remote code execution.
Figure 2 shows the generalized pipeline for executing a Java
program. First, the Java compiler (javac) receives the .java
as input. These are compiled into so-called .class files,
which contain Java bytecode. The Java bytecode files are then
input to the Java Virtual Machine and executed there.

Fig. 2. Simplified layout of execution in Java platform

The JVM is a native application, meaning it is written
in C and C++ and is therefore susceptible to vulnerabilities
specific to these languages. These include memory corruption

7https://github.com/NationalSecurityAgency/ghidra

vulnerabilities such as buffer and integer overflows. CVE-
2015-4843 [28] describes a known and fixed integer overflow
vulnerability in the JVM that could lead to RCE [22].

In Java, signed integers are represented in 32-bit. An
overflow can occur if an integer exceeds the maximum size.
This can happen when an arithmetic operation is performed
without ensuring that the result is not too large. Suppose we
have an integer max_int that contains the maximum value
represented by an integer in Java, namely 231 − 1. Adding
1 to this value will cause an overflow because the result
exceeds the maximum value. In Java, if an overflow occurs
during integer arithmetic, the value is reversed and becomes
a negative number. The observed value of the max_int
variable would be −2147483648, the smallest value that a 32-
bit integer can represent. This unexpected behavior can lead to
errors or security vulnerabilities. The overflowed value can be
used to allocate memory or index arrays outside their bounds.
An attacker can exploit this to overwrite critical data structures
or execute arbitrary code. CFI prevents the execution of
arbitrary code by restricting attackers from accessing, loading,
and executing code segments that are outside the authorized
boundaries of a user’s access.

III. METHODOLOGY

In this and the subsequent sections, we aim to answer the
following research questions:

RQ1: How can we deploy Control Flow Integrity in projects
like the JVM?

RQ2: What challenges arise when deploying CFI in such
projects?

RQ3: What is the performance impact of implementing CFI
in these environments?

In Section III-A, we outline the necessary information to
prepare the OpenJDK Java Virtual Machine for the implemen-
tation of CFI. Following this, in Section III-B, we present a
comprehensive manual approach to introducing CFI into the
JVM, addressing RQ1. Subsequently, in Section V, we explore
the encountered challenges stemming from this process to
answer RQ2. Our performance evaluation setup is detailed in
Section III-D, aimed at addressing RQ3.

A. JVM Setup

We worked with the latest LTS version of OpenJDK (open-
jdk 21-internal 2023-09-19, Server VM), the same version
installed on a system using its package manager. A root JDK
is needed to build the JDK; we used version 21.0.2 linux x64.
Our JDK is compiled on an Ubuntu 22.04.3 LTS x86 64 ma-
chine. OpenJDK offers the option only to make its JVM called
HotSpot; however, this does not include the Java executable,
meaning we cannot execute and thus test the JVM. Therefore,
we chose to build the base JDK module using make jdk,
which includes, among others, the Java executable. By default,
OpenJDK uses GCC as compiler, but since we focus on the
CFI implementation of LLVM, we have to pass Clang as the
compiler to make. To get a more accurate comparison, we

https://github.com/NationalSecurityAgency/ghidra

compile the JDK once without CFI but with Clang, which we
then use as ground truth.

To introduce CFI step-by-step into the JVM, we need
debugging symbols to determine which files to add to the
ignore list. This process is explained in detail in the following
Section III-B. However, adding debugging symbols meant that
we could no longer compile the JDK at all, as the Makefiles
define that warnings are handled as errors during the build
process. We, therefore, had to adapt the Makefiles and set
the field WARNINGS_AS_ERRORS to False. After that,
compiling the JDK with and without CFI was possible. In
order to compile a program with LLVM’s CFI, the -flto
and -fvisibility=hidden flags must be added [12].
Moreover, we created an initial ignorelist containing a list of
all source files not belonging to the JVM. By that, we ensure
that CFI will only be added to the JVM-related code.

B. Manual CFI Introduction Approach

Figure 3 shows our pipeline to introduce Control Flow
Integrity into the JVM. We use this pipeline separately for
each of the seven CFI variants (described in the Background
Section II-A) and generate an ignorelist for each. Once each
version works, we merge the ignorelists and compile it using
the cfi option, which means all seven versions are combined.
To explain our pipeline better, we will use one specific CFI
version; however, it works identically for all others.

We want to identify all files that must be excluded when
compiling the JVM protected by cfi-icall. This means
that we must add the flags displayed in Table I to the
configuration.

TABLE I
CONFIGURATION FLAGS USED FOR BUILDING PROCESS OF CFI-ICALL

FLAG DESCRIPTION

--with-toolchain-type=clang
Use Clang as compiler
instead of GCC

--with-boot-jdk=
<path_to>/jdk-21

Path to root JDK needed
to build JDK locally

--enable-debug Use debugging symbols
--with-native-debug-symbol
=internal

Store debugging symbols
directly in binary file itself

--with-conf-name=cfi-icall
Specific configuration name
defined for each CFI variant

--with-extra-cflags=
"-flto -fvisibility=hidden
-fsanitize=cfi-icall
-fsanitize-ignorelist=
<path_to>/ignorelist.txt"

Addition C flags
Required CFI flags
and CFI variant
Path to the ignorelist

--with-extra-cflags=
"-flto -fvisibility=hidden
-fsanitize=cfi-icall
-fsanitize-ignorelist=
<path_to>/ignorelist.txt"

Addition C flags
Required CFI flags
and CFI variant
Path to the ignorelist

--with-extra-cflags=
"-flto -fvisibility=hidden
-fsanitize=cfi-icall
-fsanitize-ignorelist=
<path_to>/ignorelist.txt"

Addition C flags
Required CFI flags
and CFI variant
Path to the ignorelist

Then, the source code, depicted in Figure 3- 1⃝, of OpenJDK
is compiled to build the JDK containing the java executable
that loads libjvm.so, basically, the JVM.

Once the building process is finished, we run the re-
sulting java executable as Testversion (using the argument
--version), initializing the JVM (2⃝) to test that the basic
functionalities, such as the VM initialization and basic class
loading, work as expected. The building process automatically
incorporates an optimization step at the end, following the suc-
cessful compilation of the java executable and libjvm.so.
This optimization step could fail as it involves calling the
newly built. However, since both the java executable and the
libjvm.so have been generated normally before that step,
it does not impact our CFI introduction process.

We then verify if the execution exits normally or crashes
due to receiving a SIGILL (Illegal Instruction signal) in step
3⃝. In the first case, we are done and have a working JVM
with CFI or CFI version, which executes correctly on the ’–
version’ use case. In the other one, we must dig deeper to
determine which exact file caused the SIGILL. This file needs
to be added to the ignorelist.

We run the java executable with Testversion in gdb [29],
see Figure 3- 4⃝. Since Java uses speculative loads, we must
tell gdb not to handle SIGSEGV and pass them on to Java.
After that, we can start the actual debugging process, which
means running it once and looking at the generated backtrace
when it crashes. We can extract the information from the
backtrace where we set our first breakpoint, namely at the
frame (#1), just before the SIGILL was caught (#0). Next,
we re-run everything to hit the breakpoint. We single step
into (gdb-command step or s) the function we hit with the
breakpoint and, from there, start to step over (gdb-command
next or n) until we receive the SIGILL. Then we repeat the
process but replace the last step over with a step into, and
we keep stepping over again until we encounter the SIGILL.
We must repeat this process until a step into (s) causes the
SIGILL. From there, we extract the file to be added to the
ignorelist. The file is the source file containing the code
just before the last step into (s) causing the crash. This results
in a gdb-trace that can be described by

s · k0n · s · ... · s · kin · s,

with k, i ∈ N and k donating the amount of step overs (n)
before the next step into (s). Three special cases can occur
during the process. (i) Since the JVM uses multi-threading, a
SIGILL might occur simultaneously in two or more threads.
In general, that is not a problem, but determining which file
is causing the SIGILL, as gdb switches between threads,
can complicate it. This can be solved by telling gdb only
to execute the current thread being debugged ((gdb) set
scheduler-locking on). (ii) If the set breakpoint is not
hit, we set a new breakpoint at the next frame in the backtrace,
meaning that if we had our breakpoint at #1, the next one
would be at #2, and so on, until one is hit. (iii) The file added
to the ignorelist does not fix the problem. We approach
that problem similarly to (ii); we use the next breakpoint to
see if we can identify another cause.

When inspecting a program’s stack frame after a crash, for
instance, caused by an illegal instruction (SIGILL), not all

Fig. 3. Manual CFI Introduction pipeline

previous function calls may be displayed for several reasons.
Stack corruption caused by the crash can disrupt critical
information like return addresses and frame pointers, making
it difficult for gdb to trace back through the stack accurately.
Additionally, modern compiler optimizations, such as inlining
functions, tail call optimizations, and frame pointer omission,
can obscure the stack trace by eliminating or altering the
representation of function calls in the stack. Furthermore,
crashes occurring within the prologue or epilogue code of
functions responsible for setting up and tearing down stack
frames can leave the stack in an inconsistent state, further
complicating gdb’s ability to interpret the stack frames cor-
rectly. These issues collectively hinder obtaining a complete
and accurate stack trace during debugging. When we inspect
the stack frame, the illegal instruction signal has occurred,
meaning the stack frame is already corrupted. Therefore, the
information displayed in frame #1 is simply the first intact
frame discovered by gdb.

The last step in our pipeline (Figure 3- 5⃝) of introduc-
ing CFI to the JVM is to add the identified file to the
ignorelist and re-start the whole step until we receive a
success in step 4⃝. Files that were added to the ignorelist
but did not fix anything will be removed from ignorelist.

In the end, we have seven separate ignorelist for each
of the CFI variants described in the Background Section II-A.
After finishing the process detailed above, we merge the seven
ignorelists and, by that, receive our final one, which we
use to compile the JVM with the general -fsanitize=cfi
flag. This flag means that all seven versions are combined.

The described process is generic and can be used to deploy
CFI on other software than the JVM. However, it is likely that
some adjustments will be made, such as those described for
the Makefiles or special cases in 4⃝.

C. Discussion of Approach

The manual process described above is a subtractive ap-
proach, meaning that first, all files are compiled with CFI,
and then each file causing a crash, thus being incompatible
with CFI, will be excluded and compiled without CFI. An
alternative approach we considered is the additive approach.

Here, all files would be compiled without CFI, and then CFI
would be introduced on a file-by-file basis. While the additive
approach is more straightforward and less complex, it is more
time-consuming. Take the example of the JVM, its source
base consists of 3955 files. Adding CFI file-by-file requires
compilation after each newly added file to determine if it is
compatible with CFI, meaning it does not cause a crash. This
results in a time consumption of

| source files | · compile time.

Our subtractive method requires 3.5 compilations on average
per crash. The time used for debugging varies significantly but
can be averaged on 120 minutes per session. We needed about
2.5 debugging sessions per crash. Therefore, we have

| excluded | · (3.5 · compile time + 2.5 · debug time).

The overall time consumption for the additive results in 3955 ·
15min, summing up to 988.75 hours or 41.2 days. On the
contrary, we have the subtractive method, and as we can see
in Section IV, 41 files needed to be excluded. Thus, we have
41 · (3.5 · 15min + 2.5 · 120min), resulting in only 240.875
hours. The subtractive approach is, therefore, more efficient
than the additive approach. However, the additive approach
might be more desirable for smaller projects with only a few
source files.

D. Performance Evaluation Setup

We use the DaCapo benchmark suit [23] to assess the perfor-
mance of the different JVMs resulting from the introduction of
the seven CFI variants. We chose DaCapo because it includes
a diverse set of real-world applications, providing realistic
and meaningful performance data. It is a well-established
and standardized tool in the Java community, offering com-
prehensive metrics such as execution time, memory usage,
and garbage collection behavior. We downloaded the most
recent release of DaCapo, dacapo-23.11-chopin8. The suit
contains 22 benchmarks, of which four (cassandra, h2o,
tradebeans, and tradesoap) could not be run as they

8https://www.dacapobench.org/

https://www.dacapobench.org/

only work for JDK versions ≤ 17. We run the performance
evaluation on a Dell Precision with Intel® Core™ i7, 16
processors, and 32GB of RAM. We ran each experiment five
times and took the average time.

IV. RESULTS

In Section IV-A, we delve into our findings from the CFI in-
troduction process, supported by concrete examples. Following
this, Section IV-B details the performance evaluation of our
CFI-integrated JVM.

A. CFI Introduction Process

We have compiled the JVM with LLVM’s implementation
of Control Flow Integrity. In our context, it means successfully
executing Testversion and the DaCapo benchmark suit to
make the JVM work. In total, we added 41 files to the
ignorelist, which resulted in 1.04% of JVM files needing
to be compiled without CFI. Figure 4 shows the excluded file
distribution based on the seven CFI variants explained in the
Background Section II-A.

0 2 4 6 8 10 12 14 16 18 20

cfi-cast-strict

cfi-derived-cast

cfi-unrelated-cast

cfi-nvcall

cfi-vcall

cfi-icall

cfi-mfcall

0

6

20

4

0

13

0

Total amount of file compiled without CFI

Fig. 4. Files added to the ignorelists based on CFI variants

However, when broken down to the line numbers, 13.41%
of the total JVM code needs to be compiled without CFI in
order to work correctly. 34 files needing to be excluded were
identified by the Testversion testing; the remaining seven were
determined by running the DaCapo benchmarks. We used the
same approach as described in the Methodology Section III-B
with the benchmarks.

One of the most challenging and time-consuming task when
introducing CFI was to determine the exact file causing the
JVM crash due to CFI. Splitting the introduction process into
the different CFI options also gives us more insights into which
ones are more complicated to introduce. Additionally, it is
more straightforward to identify the exact reason why CFI is
not compatible with that specific code, which causes the JVM
to crash. In the following, we discuss two example files that
must be excluded.

1) cfi-unrelated-cast: We examine a CFI violation
example caused by a cast between two unrelated
classes. Figure 5 highlights the affected lines in the file
/src/hotspot/share/code/codeCache.cpp, where
a cast on line 4 triggers a crash. The classes involved are

... 1

CodeHeap* heap = get_code_heap(code_blob_type); 2

... 3

cb = (CodeBlob*) heap->allocate(size); 4

... 5

Fig. 5. Code snipped taken from /src/hotspot/share/code/codeCache.cpp

CodeCache, CodeHeap, and CodeBlob, which are not
related. We examine each class separately to better understand
the example. The CodeCache class oversees a memory
area dedicated to storing compiled native code by the JIT
(just-in-time) compiler during Java application execution. It
optimizes performance by implementing caching strategies to
reuse compiled code and reduce execution time. CodeBlob
represents individual compiled code objects, such as methods
or code segments, and manages their lifecycle, including
loading, unloading, and garbage collection.

Lastly, the CodeHeap class handles memory allocation and
organization for storing compiled code segments within the
JVM’s memory space, organizing regions based on compila-
tion level, code type, and size. In summary, the CodeCache
class stores CodeBlob instances representing compiled code
objects within memory regions managed by CodeHeap.
This enables efficient storage, management, and execution
of compiled native code within the JVM’s runtime. In line
2, CodeCache retrieves a CodeHeap instance based on
a CodeBlob type. However, in problematic line 4, a cast
is made when attempting to associate this instance with a
CodeBlob object for further processing. Since CodeBlob
and CodeHeap are unrelated, this results in a CFI violation.
Hence, excluding the CodeCache file from the CFI intro-
duction is necessary. A possible fix might be to introduce
an additional heap field in the CodeBlob and store the
CodeHeap object there. Thus, the cast is not needed anymore.

2) cfi-icall: The complexity of this example exceeds that of
the unrelated-cast case. In the first instance, the problematic
file was pinpointed directly within the notification of the
illegal instruction. Contrastingly, in this case, identifying the
problematic file necessitated an extensive debugging session,
as detailed in the Pipeline section. Consequently, for the first
example, a single run through our pipeline sufficed, whereas
the second demanded approximately three runs with several
breakpoints adjusted. Line 20 in Figure 6 triggers a CFI
violation due to an indirect call via a function pointer and
a discrepancy between the caller’s and callee’s static and
dynamic types. Examining the JVM’s interpretation of Java
bytecode into machine code is essential to understand the
code comprehensively. Interpreters generally map individual
Java bytecode instructions to corresponding machine code
instructions. However, the JVM employs a technique known as
a template interpreter to accelerate the interpretation process.
Unlike traditional mapping, the template interpreter utilizes
precompiled machine code templates. These templates allow
entire Java bytecode sequences to be mapped to these tables
instead of an instruction-by-instruction approach. These ma-
chine code templates are precompiled code snippets optimized

// interpreter/templateTable.hpp 1

class Template { 2

typedef void (*generator)(int arg); 3

... 4

// template code generator 5

generator _gen; 6

... 7

friend class TemplateTable; 8

... 9

}; 10

11

// interpreter/templateTable.cpp 12

#include "interpreter/templateTable.hpp" 13

... 14

void Template::generate(InterpreterMacroAssembler*
masm) {↪→

15

// parameter passing 16

TemplateTable::_desc = this; 17

TemplateTable::_masm = masm; 18

// code generation 19

_gen(_arg); 20

masm->flush(); 21

} 22

Fig. 6. Code snipped taken from /src/hotspot/share/interpreter/tem-
plateTable.hpp and /src/hotspot/share/interpreter/templateTable.cpp

to enhance the JVM’s performance. The templateTable class
dynamically generates and manages these templates. The class
generates these code tables at runtime based on bytecode
patterns encountered during program execution triggered by
the code snippet displayed in Figure 6. The mismatch happens
because the static type void does not match the dynamic
generator type.

These examples are concrete. Nevertheless, there are more
general reasons why the CFI introduction might fail, not
depending on the specific CFI variant used. For instance,
projects deploy legacy code or non-standard coding practices
that do not conform to CFI’s strict control flow requirements.
Additionally, projects involving low-level operations or those
with highly dynamic and complex control flow, such as dy-
namic code generation or extensive use of reflection, may face
verification challenges with CFI mechanisms. These factors
make it difficult for CFI to enforce control flow integrity
accurately in such contexts.

In summary, we successfully integrated CFI into the
Java Virtual Machine of OpenJDK, achieving com-
patibility with 86.39% of its code, with only 41 out
of 3955 source files being excluded. Our approach
involved introducing CFI variants individually, offering
deeper insights into the causes of CFI violations within
the source code. As illustrated in our first example
(Section IV-A1), there is potential to further minimize
the percentage of excluded code through source code
refactoring and adjustments. Our manual introduction
of CFI into the JVM demonstrates the application of
LLVM’s Control Flow Integrity implementation to a
real-world project, effectively addressing RQ1.

B. Performance Evaluation

We evaluated the JVM’s performance with all seven CFI
versions separately, once combined and once without any
CFI. 18 out of 22 DaCapo benchmarks ran successfully. The
four that did not work are designed for older versions of the
JDK than the one we chose and will not work even on an
unmodified OpenJDK version 21. The performance evaluation
results are displayed in Table II.

As can be observed, all CFI variants applied individually,
but cfi-derived-cast, perform better than the JVM version
without CFI (no cfi in Table II). Possible reasons for this
observation might be the additional information the compiler
has to collect to introduce CFI. This information enables the
compiler to use it for additional optimization purposes such
as devirtualization [30], polymorphic inline caching [31], and
redundant code elimination. Moreover, CFI might influence
the placement of code segments so that it is beneficial for
the performance, e.g., by improving the cache locality or
reducing instruction cache misses [32]. CFI can guide the
compiler in generating more efficient code paths for dynamic
dispatches [33], [34], reducing overhead associated with func-
tion pointer resolution and call-site lookups [35]. In the best-
observed case, the performance is reduced by half (cfi-vcall
compared to no cfi on the benchmark avrora). In the future,
we plan to conduct in-depth research about the reasons, which
might not only help to improve the JVM’s security but also
its performance. Nevertheless, adding all CFI versions has
worsened the performance by almost 11.5%. Considering the
typical overhead introduced by LLVM’s CFI (⩽1%-15%), this
result comes as little surprise. Furthermore, the size overhead
is 34.25% for the CFI-injected JVM (all CFI variants).

av
ro

ra
ba

tik
bi

oj
av

a
ec

lip
se

fo
p

gr
ap

hc
hi

h2 jm
e

jy
th

on
ka

fk
a

lu
in

de
x

lu
se

ar
ch

pm
d

sp
rin

g
su

nfl
ow

to
m

ca
t

xa
la

n
zx

in
g

2.5
4.5
6.5
8.5

10.5
12.5
14.5
16.5
18.5
20.5
22.5

DaCapo Benchmark

Pe
rf

or
m

an
ce

in
se

c

JVM without CFI

JVM with cfi

Fig. 7. Comparison of JVM performance with and without CFI

Figure 7 illustrates the performance difference between
no CFI and all CFI variants combined. Generally, the JVM
performs better without CFI. The smallest overhead observed
is −48.1% for jme, and the largest is 37.3% for xalan.
The average performance overhead is 11.47%. There are
even two benchmarks (spring, jme) for which the JVM
version with CFI outperforms the one without by −3.2% and

TABLE II
DACAPO PERFORMANCE EVALUATION IN MSEC AND DIFFERENCE TO COMPILED WITHOUT CFI

DACAPO
BENCHMARK

CFI VARIANT PERFORMANCE IN MSEC
cfi-mfcall cfi-icall cfi-vcall cfi-nvcall cfi-unrelated-cast cfi-derived-cast cfi-cast-strict cfi NO CFI

avrora 4198 −0.2% 2229 −47.0% 2184 −48.1% 2202 −47.7% 2220 −47.2% 4206 −48.0% 2188 +0.0% 4354 +3.5% 4207
batik 2964 −0.9% 2130 −28.8% 2142 −28.4% 2228 −25.5% 2164 −27.6% 2974 −0.5% 2081 −30.4% 3177 +6.3% 2990
biojava 7019 −9.3% 6100 −21.1% 6430 −16.9% 6449 −16.7% 7431 −4.0% 7627 −1.5% 6375 −17.6% 8659 +11.9% 7740
eclipse 14667 −29.1% 14537 −29.7% 14567 −29.6% 15776 −23.7% 20536 −0.7% 20561 −0.6% 14636 −29.2% 23073 +11.6% 20682
fop 2304 −30.4% 2217 −33.1% 2234 −32.5% 2397 −27.6% 3157 −4.7% 3397 +2.6% 2180 −34.2% 3481 +5.1% 3312
graphchi 5489 −20.9% 5425 −21.8% 5646 −18.6% 5655 −18.5% 6791 −2.1% 7684 +10.8% 5368 −22.6% 7786 +12.3% 6936
h2 4587 −29.2% 4987 −23.1% 4944 −23.7% 5000 −22.9% 7183 +10.8% 6977 +7.7% 4719 −27.2% 7571 +16.8% 6481
jme 7383 −4.0% 7357 −4.4% 7380 −4.1% 7446 −3.2% 7605 −1.1% 7997 +4.0% 7353 −4.4% 7673 −0.3% 7693
jython 6855 −21.1% 7234 −16.7% 7117 −18.1% 7247 −16.6% 8757 +0.8% 10415 +19.9% 6963 −19.8% 10261 +18.1% 8687
kafka 6627 −11.2% 6469 −13.4% 6585 −11.8% 6735 −9.8% 7136 −4.4% 7333 −1.8% 6376 −14.6% 8031 +7.6% 7467
luindex 4564 −20.6% 4589 −20.1% 4583 −20.3% 4704 −18.1% 5851 +1.8% 6733 +17.2% 4632 −19.4% 6662 +15.9% 5747
lusearch 4939 −33.8% 4736 −36.5% 4815 −35.5% 4972 −33.4% 7263 −2.7% 8812 +18.1% 4747 −36.4% 9341 +25.1% 7464
pmd 4481 −31.1% 4423 −32.0% 4660 −28.3% 4841 −25.5% 6293 −3.2% 6546 +0.7% 4647 −28.5% 6821 +4.9% 6502
spring 5192 −28.5% 5233 −27.9% 5200 −28.4% 5542 −23.7% 7024 −3.2% 7916 +9.1% 5195 −28.4% 7024 −3.2% 7259
sunflow 6732 −13.4% 6197 −20.2% 7051 −9.3% 7481 −3.7% 7881 +1.4% 9834 +26.6% 5955 −23.4% 9129 +17.5% 7770
tomcat 9139 −14.5% 9077 −15.1% 9295 −13.0% 9278 −13.2% 10599 −0.8% 11203 +4.8% 9189 −14.0% 11063 +3.5% 10689
xalan 1939 −28.1% 2112 −21.7% 1938 −28.1% 2115 −21.6% 2688 −0.3% 2985 +10.7% 1974 −26.8% 3703 +37.3% 2697
zxing 3429 −31.8% 3475 −30.9% 3494 −30.6% 3783 −24.8% 4752 −5.5% 5156 +2.5% 3556 −29.3% 5672 +12.7% 5031
AVERAGE
OVERHEAD −19.90% −24.64% −23.62% −20.90% −5.16% +7.22% −25.24% +11.47%

−0.3%, respectively. The variations occur since the DaCapo
benchmark suit tests different performance aspects, which CFI
affects differently. For instance, the xalan benchmark eval-
uates XML processing tasks’ performance, particularly XSLT
(Extensible Stylesheet Language Transformations) transforma-
tions. XSLT is a language for transforming XML documents
into other XML documents, HTML, or text formats. Xalan9

is an open-source XSLT processor developed by the Apache
XML Project. Overall, CFI might affect the performance
of the xalan benchmark due to the nature of XML pro-
cessing tasks, which often involve indirect function calls,
dynamic dispatch operations, code size considerations, and
interactions with compiler optimizations. Another example
is the Spring Framework10. It is a popular framework for
building Java-based enterprise applications, providing com-
prehensive support for dependency injection, aspect-oriented
programming, transaction management, and other enterprise
features. The spring benchmark typically involves simu-
lating a web-based application scenario in which multiple
concurrent clients interact with a server-side application built
using the Spring Framework. The benchmark measures the ap-
plication’s throughput, response time, scalability under various
load conditions, resource usage, and other relevant metrics.
Overall, CFI might improve the performance of the spring
benchmark by optimizing code generation and minimizing
runtime overhead for the reasons mentioned above regarding
the CFI variants, outperforming the JVM compilation without
CFI. These factors contribute to a more efficient and scalable
execution environment for Java enterprise applications built
using the Spring Framework.

In addition to the performance evaluation, we evaluated
the resulting size of the JVM, namely the libjvm.so file.
The results are shown in Figure 8. The largest file is clearly
generated using all CFI variants, and the smallest file is
generated without any CFI. We could not observe a connection
between the size, performance, or amount of ignored files.

9https://xalan.apache.org/
10https://spring.io/projects/spring-framework

26 28 30 32 34

no cfi
cfi-cast-strict

cfi-derived-cast
cfi-unrelated-cast

cfi-nvcall
cfi-vcall
cfi-icall

cfi-mfcall
cfi

25.4 (0%)

26.0 (2.36%)

26.5 (4.33%)

25.6 (0.79%)

32.3 (27.17%)

27.2 (7.09%)

26.5 (4.33%)

25.8 (1.57%)

34.1 (34.25%)

Size of libjvm.so in MB

Fig. 8. Comparison of JVM sizes based on CFI variants and overhead (%)

We conducted performance evaluations of the CFI-
integrated JVM discussed in Section IV-A using the
DaCapo benchmark suite. Our findings reveal a per-
formance overhead of 11.49%, falling within the ex-
pected range (⩽1%-15%) outlined in LLVM’s doc-
umentation [12] and answering RQ3. Of particular
interest is the unexpected discovery that applying the
seven CFI variants individually results in performance
enhancements compared to the JVM version without
CFI. This intriguing outcome suggests avenues for
further research into Control Flow Integrity, exploring
its potential not only to enhance security but also to
improve system performance.

V. DISCUSSION - LESSON LEARNT

Introducing Control Flow Integrity (CFI) into the Java
Virtual Machine (JVM) of OpenJDK presents challenges and
opportunities. In this Section, we discuss how the negative
aspects of CFI integration can be mitigated by leveraging
positive elements and vice versa. Integrating CFI into the
JVM poses significant challenges, notably in terms of time
and resource consumption. The manual nature of our CFI
introduction process and the time-consuming compilation of

https://xalan.apache.org/
https://spring.io/projects/spring-framework

the JDK results in a cumbersome workflow. Adjustments to
Makefiles and complex debugging further contribute to the
time expenses. In addition, there is the negative aspect of a
significant increase in the JVM’s performance by an average
of almost 11.5% when using the DaCapo benchmark suit for
evaluation. This performance penalty renders CFI impractical
for deployment in performance-critical environments such
as servers. Additionally, the 34% increase in size presents
challenges, particularly for resource-constrained platforms like
mobile devices.

Despite these challenges, our research uncovers several
positive aspects that can mitigate the negative impact of CFI
integration. Notably, only a tiny fraction of files (41 out of
3955) require exclusion from CFI protection, resulting in a rel-
atively small amount of unprotected code (13.41%). Analyzing
the root causes and, e.g., refactoring the code might further
reduce this percentage. Furthermore, the size overhead is
negligible, primarily for servers and desktops, although it may
be more significant for mobile devices. While time-consuming,
the introduction process can be partially automated, reducing
manual interaction and time requirements. This automation can
help alleviate the burden associated with the CFI integration
process. Significantly, performance improves for single CFI
variants, offering promising possibilities for enhancing both
security and performance in the JDK.

While the challenges of CFI integration are substantial, they
can be addressed by leveraging the positive aspects disclosed
in our research. For example, automating the introduction pro-
cess can reduce manual effort and time consumption, mitigat-
ing the negative impact of manual adjustments and debugging.
Additionally, the performance improvements observed with
single CFI variants motivate further research to optimize CFI
integration and performance. Conversely, the positive aspects
of CFI integration, such as the minimal amount of unprotected
code and the potential for performance improvements, can
help justify the time and resource investment required for
integration. By optimizing our CFI integration processes and
taking advantage of the observed performance benefits, the
JVM can benefit from both increased security and decreased
performance. This renders CFI a viable option for improving
the security posture of the Java Virtual Machine.

Introducing CFI into the JVM presents significant
challenges, including time-consuming integration pro-
cesses, notable performance penalties, and increased
code size. In addition to the general time-consuming in-
tegration, instructions and necessary adjustments, such
as modifying Makefiles before starting the debugging
process and excluding CFI-incompatible files, are nec-
essary. These specific findings directly address RQ2.
Despite these hurdles, our research reveals positive
aspects, such as minimal file exclusion from CFI pro-
tection and potential performance improvements with
individual CFI variants. By addressing these challenges
and optimizing the integration process, CFI becomes a

viable option for enhancing the security of programs
like the JVM.

VI. RELATED WORK

We split the Related Work Section into two main parts, other
existing CFI approaches, Section VI-A), and Section VI-B
focusing on previous works aiming to enhance the Java Virtual
Machine’s security.

A. Control Flow Integrity Approaches
Over the years, numerous CFI approaches [7], [8], [36]–

[38] have been formalized but barely implemented. The im-
plementation for the LLVM compiler Clang is among the most
prominent ones, as it is for examples used by Google [18].
Most other available CFI tools are tailored for a particular
purpose, while LLVM’s CFI implementation is a more general-
purpose solution. In the following, we discuss four of these
alternative approaches.

EC-CFI [39] is one of the most recent CFI implementations,
published by Nasahl et al. in 2023. EC-CFI proposes a novel
approach to enhancing CFI using code encryption to mitigate
fault attacks. The approach is to encrypt and dynamically
decrypt critical code segments at runtime, thereby thwarting
attackers’ attempts to manipulate control flow by inducing
faults in the execution.

CFIXX [40] is a CFI solution designed to provide fine-
grained control flow protection. It generally incurs low per-
formance overhead due to its efficient design and hardware
support. By leveraging lightweight metadata and optimizing
runtime checks, CFIXX achieves effective control flow pro-
tection with minimal impact on application performance. The
performance overhead of CFIXX is typically less than 5%,
making it suitable for use in various software environments
without significant degradation in execution speed.

PICFI [10] verifies that each indirect branch target matches
a valid control flow graph (CFG) node at runtime. PICFI
is designed to work with position-independent executables,
binaries that can be loaded at any memory address. This makes
it suitable for modern software environments where address
space layout randomization (ASLR) is commonly employed
to thwart memory-based attacks.

binCFI [8] is a CFI implementation focusing on binary-
level. It analyzes binary executables and inserts runtime checks
to ensure that the control flow adheres to a predefined control
flow graph. binCFI offers fine-grained control over the en-
forcement policies and can be tailored to specific application
requirements. Yan Lin [11] evaluated the performance of
binCFI and found that it comes with an overhead of up to
almost 30%.

Zhang et al. [41] introduce CCFIR, a practical method
that combines control flow integrity and code section ran-
domization in binary executables to prevent control flow
hijacking attacks. The performance overhead, on average, is
only 3.6% [42]. The approach is designed for real-world
effectiveness, aiming to provide robust protection for binary
executables.

Nevertheless, none of the aforementioned CFI approaches
provides a real-world deployable implementation.

B. JVM Security Efforts

Since the JVM’s birth, efforts have been made to strengthen
its security. These initiatives encompass a spectrum of meth-
ods, from mandatory access control to fuzzers. In the sub-
sequent paragraphs, we outline various tools and approaches
employed in this pursuit.

CONFUZZION [43] is a fuzzing tool designed specifically
for testing the security and robustness of JVM implementa-
tions. It works by generating and executing a large number of
Java programs to trigger unexpected or erroneous behavior
in the JVM. CONFUZZION applies random mutations to
the bytecode of Java programs, such as inserting incorrect
instructions or modifying existing ones, to explore different
code paths and uncover potential vulnerabilities or bugs in the
JVM. By fuzzing the JVM, CONFUZZION helps identify
and mitigate security issues, memory corruptions, or other
vulnerabilities that attackers could exploit.

Brennan et al. [44] introduce a method to find JIT-induced
side-channel vulnerabilities in JVMs using fuzzing. It outlines
a systematic process to generate and run Java programs aiming
to trigger JIT optimizations that might leak sensitive data
through side channels. By fuzzing the JVM, the paper seeks to
reveal vulnerabilities exploitable by attackers to infer secrets
or alter Java program execution.

Classming [45] is a security tool designed to detect class
boundary violations in Java programs. It analyzes bytecode
to identify instances where a class in one package attempts
to access a class in another package in violation of the
defined access control rules. By detecting these violations,
Classming helps identify potential security vulnerabilities
related to access control within Java applications.

Venelle et al. [46] propose adding Mandatory Access
Control (MAC) capabilities to the JVM. This enhancement
aims to enforce fine-grained access control policies on Java
applications, enhancing security by restricting the actions that
Java code can perform based on security labels or attributes.

Pridgen et al. [47] address the issue of reducing persistent
latent secrets in the HotSpot JVM. They focus on mitigating
the risk posed by sensitive data remaining in memory after it
is no longer needed, which attackers could access. The paper
proposes techniques to minimize the exposure of such secrets
by implementing memory management improvements within
the HotSpot JVM.

Ion et al. [48] discuss extending the JVM to enforce
fine-grained security policies on mobile devices. It proposes
enhancements to the JVM architecture to enable more granular
control over security policies, especially in mobile environ-
ments where security is crucial. These enhancements may
include mechanisms for runtime monitoring, access control,
and policy enforcement within the JVM.

Riom et al. [49] examine Android’s Java Class Library
(JCL), focusing on its evolution and security implications.
The insights are relevant while it does not directly address

the JVM’s security. It analyzes changes in the Android JCL
over time, identifying security-related modifications and their
impact on Android app security. By understanding the evo-
lution of the Android JCL and its security implications, the
paper informs strategies for enhancing security within the JVM
ecosystem, especially concerning mobile application security
and Java bytecode execution on Android devices. All these
efforts highlight the importance of further improving the
JVM’s security.

C. Discussion of Control Flow Integrity’s Limitations

LLVM’s Control Flow Integrity can suffer from limitations
in precision, which may allow specific attacks to bypass its
safeguards. For example, CFI often depends on indirect control
flow transfers, such as indirect function calls, restricted to
a predetermined set of allowed targets. However, if the set
of allowed targets is too large, attackers may still be able
to exploit the system by targeting the remaining permissi-
ble options [50]. This issue, commonly known as the over-
approximation challenge, stems from the algorithm used to
generate the control flow graph (CFG) and define the set
of permissible jump and call targets. CFI operates on the
assumption that the targets of indirect control flows are clearly
defined and that a legitimate set of control flows can be
established. However, in complex systems, especially those
involving dynamic code loading or reflection, this assumption
may not hold, leading to potential security gaps [51].

In addition, although CFI is an efficient mitigation tech-
nique, it does not encompass all potential attack vectors. Its
primary focus is on indirect control flow transfers, but it
might not fully shield against other types of attacks, such
as direct memory corruption or data-oriented exploits [40].
This highlights the importance of integrating CFI within a
broader security strategy, including additional measures to
address these vulnerabilities. Moreover, sophisticated attackers
might leverage advanced techniques, such as Return-Oriented
Programming (ROP) or Jump-Oriented Programming (JOP), to
craft attacks that circumvent CFI’s protections [52], [53]. This
is especially concerning when the CFI implementation lacks
fine granularity, allowing these methods to slip through the
cracks. Despite efforts to minimize the performance impact of
LLVM’s CFI, an overhead still exists [12]. This performance
cost can be particularly problematic in applications where
efficiency is critical, rendering CFI less desirable for some
use cases.

CFI might not be compatible with all code bases or
development practices, especially in legacy systems where
assumptions about control flow integrity were not considered
during initial design [15], [54]. This highlights the importance
of early security planning and the need to consider control
flow integrity from the outset of a project. In addition, it un-
derscores the importance of our work and its future extension.

VII. CONCLUSION

In this work, we enhanced the security of the OpenJDK
JVM by integrating LLVM’s Control Flow Integrity (CFI)

implementation to mitigate the impact of memory corruption
vulnerabilities. Our manual approach to CFI integration offers
a generic solution applicable to a wide range of real-world
projects beyond the JVM ecosystem. Through our evaluation
using the DaCapo benchmark suite, we assessed the perfor-
mance implications of our CFI-integrated JVM version.

Our findings reveal that while introducing CFI incurs an
average performance overhead of nearly 11.47% and a 34.25%
increase in binary size, it introduces crucial security en-
hancements. Notably, our research uncovers that specific CFI
subcategories, when used individually, improve the JVM’s
performance. This discovery underscores the potential for CFI
to strengthen security and enhance application performance
overall.

Overall, our study contributes to advancing the understand-
ing of CFI integration in software, offering insights into
both the challenges and opportunities associated with securing
software systems against memory corruption attacks. Future
research may explore further optimizations to minimize per-
formance overhead while maximizing security benefits, paving
the way for more resilient and efficient applications.

REFERENCES

[1] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in
memory,” in 2013 IEEE Symposium on Security and Privacy. IEEE,
2013, pp. 48–62.

[2] The MITRE Corporation, “CWE - Common Weakness Enumeration,”
https://cwe.mitre.org/, accessed 2024-05-01.

[3] ——, “CWE - 2023 CWE Top 10 KEV Weaknesses,” https://cwe.mitre.
org/top25/archive/2023/2023 kev list.html, Dec. 2023, accessed 2024-
05-01.

[4] ——, “CWE - 2023 CWE Top 25 Most Dangerous Software Weak-
nesses,” https://cwe.mitre.org/top25/archive/2023/2023 top25 list.html,
Nov. 2023, accessed 2024-05-01.

[5] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proceedings of the 12th ACM Conference on Computer
and Communications Security, ser. CCS ’05. New York, NY, USA:
Association for Computing Machinery, 2005, p. 340–353. [Online].
Available: https://doi.org/10.1145/1102120.1102165

[6] ——, “Control-flow integrity principles, implementations, and applica-
tions,” ACM Transactions on Information and System Security (TISSEC),
vol. 13, no. 1, pp. 1–40, 2009.

[7] B. Niu and G. Tan, “Modular control-flow integrity,” in Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2014, pp. 577–587.

[8] M. Wang, H. Yin, A. V. Bhaskar, P. Su, and D. Feng, “Binary code
continent: Finer-grained control flow integrity for stripped binaries,” in
Proceedings of the 31st annual computer security applications confer-
ence, 2015, pp. 331–340.

[9] V. Van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc,
A. Slowinska, H. Bos, and C. Giuffrida, “Practical context-sensitive cfi,”
in Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, 2015, pp. 927–940.

[10] B. Niu and G. Tan, “Per-input control-flow integrity,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, 2015, pp. 914–926.

[11] Y. Lin, Novel techniques in recovering, embedding, and enforcing
policies for control-flow integrity. Springer Nature, 2021.

[12] The Clang Team, “Control Flow Integrity - Clang 19.0.0git documen-
tation,” https://clang.llvm.org/docs/ControlFlowIntegrity.html, accessed
2024-05-01.

[13] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike, “Enforcing {Forward-Edge}{Control-Flow}
integrity in {GCC} & {LLVM},” in 23rd USENIX security symposium
(USENIX security 14), 2014, pp. 941–955.

[14] Jonathan Wakely, “vtv - GCC Wiki,” https://gcc.gnu.org/wiki/vtv, Nov.
2014, accessed 2024-05-01.

[15] X. Xu, M. Ghaffarinia, W. Wang, K. W. Hamlen, and Z. Lin,
“{CONFIRM}: Evaluating compatibility and relevance of control-flow
integrity protections for modern software,” in 28th USENIX Security
Symposium (USENIX Security 19), 2019, pp. 1805–1821.

[16] Google Groups, “Android Clang/LLVM Prebuilts,” https:
//android.googlesource.com/platform/prebuilts/clang/host/linux-
x86/+/main/README.md, accessed 2024-05-01.

[17] ——, “Android GCC 4.9 Deprecation Schedule,” https:
//android.googlesource.com/platform/prebuilts/clang/host/linux-
x86/+/refs/heads/main/GCC 4 9 DEPRECATION.md, accessed
2024-05-01.

[18] The Chromium Projects, “Control Flow Integrity | Android Open
Source Project,” https://source.android.com/docs/security/test/cfi, ac-
cessed 2024-05-01.

[19] Jake Edge, “Control-low integrity for the kernel [LWN.net],” https://lwn.
net/Articles/810077/, Jan. 2020, accessed 2024-05-01.

[20] The Chromium Projects, “Control Flow Integrity,” https://www.
chromium.org/developers/testing/control-flow-integrity/, Nov. 2023, ac-
cessed 2024-05-01.

[21] Bugzilla, “510629 - (cfi)[meta] Ship Control Flow Integrity,” https:
//bugzilla.mozilla.org/show bug.cgi?id=510629, Aug. 2009, accessed
2024-05-01.

[22] I. Eauvidoum and disk noise, “Twenty years of Escaping the Java
Sandbox,” Phrack Magazine, vol. 0x10, no. 0x46, p. 0x07, 2021.

[23] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Ste-
fanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann, “The
DaCapo benchmarks: Java benchmarking development and analysis,”
in OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN
conference on Object-Oriented Programing, Systems, Languages, and
Applications. New York, NY, USA: ACM Press, Oct. 2006, pp. 169–
190.

[24] Marco Benatto, “Fighting exploits with Control-Flow Integrity (CFI) in
Clang,” https://www.redhat.com/en/blog/fighting-exploits-control-flow-
integrity-cfi-clang, May 2020, accessed 2024-05-08.

[25] Windows App Development, “Control Flow Guard - Win32 apps | Mi-
crosoft Learn,” https://learn.microsoft.com/en-us/windows/win32/secbp/
control-flow-guard, accessed 2024-05-06.

[26] ShadowCallStack – Clang 19.0.0git documentation, “ShadowCallStack,”
https://clang.llvm.org/docs/ShadowCallStack.html, accessed 2024-05-
06.

[27] National Security Agency (NSA), “ghidra/DevGuide.md at
master · NationalSecurityAgency/ghidra,” https://github.com/
NationalSecurityAgency/ghidra/blob/master/DevGuide.md, accessed
2024-07-31.

[28] Red Hat Bugzilla, “1273053 - (CVE-2015-4843) CVE-2015-4843 Open-
JDK: java.nio Buffers integer overflow issues (Libraries, 8130891),”
https://bugzilla.redhat.com/show bug.cgi?id=1273053, accessed 2024-
05-08.

[29] The GDB developers, “GDB: The GNU Project Debugger,” https://www.
sourceware.org/gdb/, Mar. 2024, accessed 2024-05-11.

[30] Piotr Padlewski, “Devirtualization in LLVM and Clang - The
LLVM Project Blog,” https://blog.llvm.org/2017/03/devirtualization-in-
llvm-and-clang.html, Mar. 2017, accessed 2024-05-12.

[31] U. Hölzle, C. Chambers, and D. Ungar, “Optimizing dynamically-
typed object-oriented languages with polymorphic inline caches,” in
ECOOP’91 European Conference on Object-Oriented Programming:
Geneva, Switzerland, July 15–19, 1991 Proceedings 5. Springer, 1991,
pp. 21–38.

[32] Sergei Larin, Harsha Jagasia, Tobias Edler von Koch, “Impact
of the current LLVM inlining strategy on complex embedded
application memory utilization and performance - Impact-of-the-
current-LLVM-inlining-strategy.pdf,” https://llvm.org/devmtg/2017-02-
04/Impact-of-the-current-LLVM-inlining-strategy.pdf, Feb. 2017, ac-
cessed 2024-05-12.

[33] D. Bounov, R. G. Kici, and S. Lerner, “Protecting c++ dynamic dispatch
through vtable interleaving.” in NDSS, 2016.

[34] The Clang Team, “Control Flow Integrity Design Documenta-
tion - Clang 19.0.0git documentation,” https://clang.llvm.org/docs/
ControlFlowIntegrityDesign.html, accessed 2024-05-12.

[35] Chris Lattner, Dinakar Dhurjati, Gabor Greif, Joel Stanley and Reid
Spencer, “LLVM’s Programmer’s Manual,” https://releases.llvm.org/2.
5/docs/ProgrammersManual.html#TypeResolve, accessed 2024-05-12.

https://cwe.mitre.org/
https://cwe.mitre.org/top25/archive/2023/2023_kev_list.html
https://cwe.mitre.org/top25/archive/2023/2023_kev_list.html
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html
https://doi.org/10.1145/1102120.1102165
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://gcc.gnu.org/wiki/vtv
https://android.googlesource.com/platform/prebuilts/clang/host/linux-x86/+/main/README.md
https://android.googlesource.com/platform/prebuilts/clang/host/linux-x86/+/main/README.md
https://android.googlesource.com/platform/prebuilts/clang/host/linux-x86/+/main/README.md
https://android.googlesource.com/platform/prebuilts/clang/host/linux-x86/+/refs/heads/main/GCC_4_9_DEPRECATION.md
https://android.googlesource.com/platform/prebuilts/clang/host/linux-x86/+/refs/heads/main/GCC_4_9_DEPRECATION.md
https://android.googlesource.com/platform/prebuilts/clang/host/linux-x86/+/refs/heads/main/GCC_4_9_DEPRECATION.md
https://source.android.com/docs/security/test/cfi
https://lwn.net/Articles/810077/
https://lwn.net/Articles/810077/
https://www.chromium.org/developers/testing/control-flow-integrity/
https://www.chromium.org/developers/testing/control-flow-integrity/
https://bugzilla.mozilla.org/show_bug.cgi?id=510629
https://bugzilla.mozilla.org/show_bug.cgi?id=510629
https://www.redhat.com/en/blog/fighting-exploits-control-flow-integrity-cfi-clang
https://www.redhat.com/en/blog/fighting-exploits-control-flow-integrity-cfi-clang
https://learn.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://learn.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://clang.llvm.org/docs/ShadowCallStack.html
https://github.com/NationalSecurityAgency/ghidra/blob/master/DevGuide.md
https://github.com/NationalSecurityAgency/ghidra/blob/master/DevGuide.md
https://bugzilla.redhat.com/show_bug.cgi?id=1273053
https://www.sourceware.org/gdb/
https://www.sourceware.org/gdb/
https://blog.llvm.org/2017/03/devirtualization-in-llvm-and-clang.html
https://blog.llvm.org/2017/03/devirtualization-in-llvm-and-clang.html
https://llvm.org/devmtg/2017-02-04/Impact-of-the-current-LLVM-inlining-strategy.pdf
https://llvm.org/devmtg/2017-02-04/Impact-of-the-current-LLVM-inlining-strategy.pdf
https://clang.llvm.org/docs/ControlFlowIntegrityDesign.html
https://clang.llvm.org/docs/ControlFlowIntegrityDesign.html
https://releases.llvm.org/2.5/docs/ProgrammersManual.html#TypeResolve
https://releases.llvm.org/2.5/docs/ProgrammersManual.html#TypeResolve

[36] W. He, S. Das, W. Zhang, and Y. Liu, “Bbb-cfi: lightweight cfi
approach against code-reuse attacks using basic block information,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 19,
no. 1, pp. 1–22, 2020.

[37] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières, “Ccfi:
Cryptographically enforced control flow integrity,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, 2015, pp. 941–951.

[38] V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz,
“Opaque control-flow integrity.” in NDSS, vol. 26, 2015, pp. 27–30.

[39] P. Nasahl, S. Sultana, H. Liljestrand, K. Grewal, M. LeMay, D. M.
Durham, D. Schrammel, and S. Mangard, “Ec-cfi: Control-flow integrity
via code encryption counteracting fault attacks,” in 2023 IEEE Interna-
tional Symposium on Hardware Oriented Security and Trust (HOST).
IEEE, 2023, pp. 24–35.

[40] N. Burow, D. McKee, S. A. Carr, and M. Payer, “Cfixx: Object type
integrity for c++ virtual dispatch,” in Symposium on Network and
Distributed System Security (NDSS), 2018.

[41] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical control flow integrity and randomization
for binary executables,” in 2013 IEEE symposium on security and
privacy. IEEE, 2013, pp. 559–573.

[42] S. Sayeed and H. Marco-Gisbert, “On the effectiveness of control-flow
integrity against modern attack techniques,” in ICT Systems Security and
Privacy Protection: 34th IFIP TC 11 International Conference, SEC
2019, Lisbon, Portugal, June 25-27, 2019, Proceedings 34. Springer,
2019, pp. 331–344.

[43] W. Bonnaventure, A. Khanfir, A. Bartel, M. Papadakis, and Y. Le Traon,
“Confuzzion: A java virtual machine fuzzer for type confusion vul-
nerabilities,” in 2021 IEEE 21st International Conference on Software
Quality, Reliability and Security (QRS). IEEE, 2021, pp. 586–597.

[44] T. Brennan, S. Saha, and T. Bultan, “Jvm fuzzing for jit-induced side-
channel detection,” in Proceedings of the ACM/IEEE 42nd international
conference on software engineering, 2020, pp. 1011–1023.

[45] Y. Chen, T. Su, and Z. Su, “Deep differential testing of jvm implemen-
tations,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 2019, pp. 1257–1268.

[46] B. Venelle, J. Briffaut, L. Clévy, and C. Toinard, “Security enhanced
java: Mandatory access control for the java virtual machine,” in 16th
IEEE International Symposium on Object/component/service-oriented
Real-time distributed Computing (ISORC 2013). IEEE, 2013, pp. 1–7.

[47] A. Pridgen, S. Garfinkel, and D. Wallach, “Present but unreachable:
Reducing persistentlatent secrets in hotspot jvm,” 2017.

[48] I. Ion, B. Dragovic, and B. Crispo, “Extending the java virtual machine
to enforce fine-grained security policies in mobile devices,” in Twenty-
Third Annual Computer Security Applications Conference (ACSAC
2007). Ieee, 2007, pp. 233–242.

[49] T. Riom and A. Bartel, “An in-depth analysis of android’s java class
library: its evolution and security impact,” in 2023 IEEE Secure Devel-
opment Conference (SecDev), 2023, pp. 133–144.

[50] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “{Control-
Flow} bending: On the effectiveness of {Control-Flow} integrity,” in
24th USENIX Security Symposium (USENIX Security 15), 2015, pp.
161–176.

[51] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and
M. Payer, “Control-flow integrity: Precision, security, and performance,”
ACM Computing Surveys (CSUR), vol. 50, no. 1, pp. 1–33, 2017.

[52] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and
T. Holz, “Counterfeit object-oriented programming: On the difficulty
of preventing code reuse attacks in c++ applications,” in 2015 IEEE
Symposium on Security and Privacy. IEEE, 2015, pp. 745–762.

[53] Y. Li, M. Wang, C. Zhang, X. Chen, S. Yang, and Y. Liu, “Finding
cracks in shields: On the security of control flow integrity mechanisms,”
in Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, 2020, pp. 1821–1835.

[54] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
control: Overcoming control-flow integrity,” in 2014 IEEE Symposium
on Security and Privacy. IEEE, 2014, pp. 575–589.

	Introduction
	Background
	Control Flow Integrity (CFI)
	cfi-cast-strict
	cfi-derived-cast
	cfi-unrelated-cast
	cfi-nvcall
	cfi-vcall
	cfi-icall
	cfi-mfcall

	Java Virtual Machine (JVM)

	Methodology
	JVM Setup
	Manual CFI Introduction Approach
	Discussion of Approach
	Performance Evaluation Setup

	Results
	CFI Introduction Process
	cfi-unrelated-cast
	cfi-icall

	Performance Evaluation

	Discussion - Lesson Learnt
	Related Work
	Control Flow Integrity Approaches
	JVM Security Efforts
	Discussion of Control Flow Integrity's Limitations

	Conclusion
	References

