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Abstract—Invalid object initialization vulnerabilities have been
identified since the 1990’s by a research group at Princeton
University. These vulnerabilities are critical since they can be
used to totally compromise the security of a Java virtual machine.
Recently, such a vulnerability identified as CVE-2017-3289 has
been found again in the bytecode verifier of the JVM and affects
more than 40 versions of the JVM. In this paper, we present a
runtime solution called MUSTI to detect and prevent attacks
leveraging this kind of critical vulnerabilities. We optimize
MUSTI to have a runtime overhead below 0.5% and a memory
overhead below 0.42%. Compared to state-of-the-art, MUSTI is
completely automated and does not require to manually annotate
the code.

Index Terms—Java, object initialization, vulnerability, sandbox

I. INTRODUCTION

WHEN the Java language was introduced in the mid-
1990’s, it was thought that the language is more secure

than C/C++ because it does not allow to directly manipulate
the memory – it uses a garbage collector instead – and because
array bounds are automatically checked at runtime. This design
makes certain vulnerabilities such as buffer overflows a thing
of the past. Unfortunately, the Java Virtual Machine (JVM)
and part of the Java library are still written in C/C++ code
which makes the whole Java architecture still vulnerable to
low level attacks.

Another Java feature, emphasized by Sun Microsystems at
the time, is the fact that the JVM can run untrusted code
in a sandbox and give this untrusted code only limited or
no privilege at all. This was particularly convenient in web
browser which could execute such untrusted code in so called
Applets [5] with the least privileges. Alas, even though the
security architecture seemed fine, numerous security vulnera-
bilities have been found in Java which enable, in most cases,
a total sandbox escape. This means that if an analyst 1 can
redirect a user to a web page he controls, he can run malicious
Java code on the user’s browser to escape the sandbox and
potentially run code with the privileges of the web browser.
The situation was so alarming for Java and other plugins based
on the NPAPI, that major companies developing web browsers
such as Google [12] and Mozilla [13] decided to first disable
them by default and to then remove them altogether.

Today, a typical computer user navigates the world wide
web without executing any Java code within his browser.

1Instead of using the term attacker, in this paper, we choose the more
neutral term analyst which represents both an attacker and a researcher.

However, it may still be the case that companies who rely
on legacy software require their employees to activate the Java
plugin in their browsers to access specific services. Also, some
computer users – not necessarily within a company – may also
choose to re-enable Java to access a particular service. Forcing
the browser to use Java increases the attack surface and thus
puts users at risk.

Not only are end users at risk of having their machines
compromised but so are servers. Indeed, some services such
as Apache Spark 2 (an analytics engine for big data) run
user provided Java code. Even if the code is being run in a
sandbox, it might end up running malicious code to exploit a
security vulnerability to escape the Java sandbox. In this paper
we focus on one kind of such critical vulnerabilities called
invalid object initialization. Our approach aims at improving
the Java virtual machine to prevent invalid object initialization
vulnerabilities from being exploited at runtime.

Meanwhile, Oracle 3 did a lot of effort to improve the
security of the Java platform. One approach they used is
to reduce the attack surface. Indeed, the Java Class Library
(JCL) has numerous legacy classes which are prone to contain
security vulnerabilities. By marking them as “restricted” an
analyst cannot directly instantiate them anymore and thus
cannot use code that might have been useful to perform his
attack. This effectively breaks existing exploits relying on such
classes but also makes it harder for the analyst to find new code
he can leverage in a new attack.

Oracle also developed an approach to automate the process
of verifying the code and finding new security vulnerabili-
ties [20]. The approach taints untrusted user data and checks
if it flows to security sensitive operations such as the loading of
a class in a privileged context. If it does, the approach makes
sure that objects created by the security sensitive operation
do not flow back to the user context. This prevents, in our
example, an analyst from using a class loaded by a security
sensitive operation.

Unfortunately, despite these efforts, new vulnerabilities have
been found. One of the latest vulnerabilities, CVE-2017-3289
– an invalid object initialization vulnerability – is studied in
this paper. This kind of vulnerability is critical as it allows an
analyst to completely bypass the Java sandbox.

Researchers have already developed an approach to tackle
this kind of vulnerability [29]. However, it requires to man-

2http://spark.apache.org/
3Oracle completed the acquisition of Sun Microsystems in 2010.
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ually annotate the code which makes it difficult to use when
the code is in constant evolution as is the case for the JCL and
the JVM. This might explain why such an approach has not
yet been adopted in practice. On the contrary, our approach is
fully automated and does not require any human intervention.

The contributions we make are the following:
• We analyze a recent Java vulnerability and develop proof-

of-concept for it
• We analyze the root causes leading to invalid object

initialization vulnerabilities
• We propose an open-source and fully automated solution,

MUSTI, to prevent Java sandbox bypasses leveraging
uninitialized instance vulnerabilities 4

• We evaluate MUSTI in terms of detection, runtime over-
head and memory overhead

This paper is organized as follows. First, in Section II, the
Java security model is presented. Then, we explain what the
invalid object initialization vulnerability is in Section III. In
Section IV we present our approach to prevent the vulner-
ability at runtime. We evaluate our approach in Section V.
In Sections VI and VII we describe the limitations of the
approach and discuss potential improvements. Related work is
presented in Section VIII. Finally, we conclude in Section IX.

II. THE JAVA SECURITY MODEL

In this section, we briefly present the fundamental concepts
that are required to understand the Java security model:
security policy, security domains, permissions and the security
manager. The reader familiar with the Java security model can
directly jump to Section III.

A. Security Policy

Java code can be associated with a security policy. The
policy is a list of permissions describing what the code is
allowed to do. For instance, a security policy containing
the SOCKET permission allows the associated Java code to
connect to a remote host; a security policy containing the
CREATE_CLASS_LOADER permission allows the associated
Java code to create a class loader. Usually, it makes sense to
give more permissions to trusted code and as few permissions
as possible to untrusted code. For instance, trusted server code
can run with all permissions, while untrusted code running
in the browser runs with no permission. To prevent the code
from performing forbidden operations, Java runs untrusted
code within a sandbox. For every sensitive operation the code
tries to perform, the sandbox checks at runtime that the code
is authorized. If it is not, a security exception is thrown.
Untrusted code typically has no permission and, thus, cannot
access the file system, the network, etc.

B. Security Domain

Every class in the JVM is loaded with a class loader and as-
sociated with a security domain. Classes shipped with the JRE
(Java Runtime Environment) also known as system classes, are

4The implementation is available at https://github.com/Alexandre-Bartel/
jvm-musti.

System Classes (Trusted code)
1c l a s s C l a s s L o a d e r {
2p r o t e c t e d C l a s s L o a d e r ( ) {
3t h i s ( c h e c k C r e a t e C l a s s L o a d e r ( ) , g e t S y s t e m C l a s s L o a d e r ( ) )

;}
4}
5
6p r i v a t e s t a t i c Void c h e c k C r e a t e C l a s s L o a d e r ( ) {
7S e c u r i t y M a n a g e r s e c u r i t y = System . g e t S e c u r i t y M a n a g e r ( ) ;
8i f ( s e c u r i t y != n u l l ) {
9s e c u r i t y . c h e c k C r e a t e C l a s s L o a d e r ( ) ;
10}
11re turn n u l l ;
12}
13}
14
15c l a s s S e c u r i t y M a n a g e r {
16p u b l i c vo id c h e c k C r e a t e C l a s s L o a d e r ( ) {
17c h e c k P e r m i s s i o n ( S e c u r i t y C o n s t a n t s .

CREATE CLASSLOADER PERMISSION) ;
18}
19}

Application Classes (Untrusted code)
20c l a s s Unt rus t edMain {
21p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) {
22C l a s s L o a d e r myCL = new C l a s s L o a d e r ( ) { } ;
23}
24}

Fig. 1. Code without the CREATE_CLASSLOADER permission (Untrusted-
Main) cannot instantiate a class loader (line 22) because the security check in
the system class java.lang.ClassLoader (line 17) will throw a security
exception.

loaded with all permissions. An example of a system class is
java.lang.Class. Untrusted classes downloaded from the
Internet and running in an applet, or more generally all classes
coming from an untrusted source, should be loaded with no
permission. Trusted classes can be loaded with all permissions
but should be loaded with the least permissions to respect the
principle of least privilege [33].

In this paper we suppose that the analyst is running un-
trusted code on the Java virtual machine. This untrusted code
runs within the sandbox and has no permission.

C. The Security Manager

Permissions are only checked when a security manager
has been created and set. This can be done programmatically
via a call to System.setSecurityManager() or with
a command line option when launching the Java virtual
machine. How the security manager is used when checking
permissions is illustrated in Figure 1. In the constructor of the
system class ClassLoader from the java.lang package,
there is a call to checkCreateClassLoader() (line 3).
This method then calls checkCreateClassLoader of the
security manager (line 9). Finally, the security manager calls
checkPermission() to check for permission CREATE_-
CLASSLOADER (line 17). Notice that the security check is
only performed if a security manager is set (lines 7-8). Thus,
with a security manager set, untrusted code cannot instantiate
a subclass of a ClassLoader since the constructor checks
for the CREATE_CLASSLOADER permission.

https://github.com/Alexandre-Bartel/jvm-musti
https://github.com/Alexandre-Bartel/jvm-musti
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SecurityManager.checkPermission()
SecurityManager.checkCreateClassLoader() (line 16)
ClassLoader.checkCreateClassLoader() (line 6)
ClassLoader() (line 2)
UntrustedMain.main() (line 21)

Fig. 2. Call stack when the checkPermission method is called (Figure 1
line 17).

D. Permission Checks

When a permission P is checked, all elements of the
stack trace (all methods that have been called since main())
are analyzed and must hold permission P . Otherwise, a
SecurityException is thrown.

When the code of Figure 1 is executed and reaches line
17, it has the call stack with five elements illustrated Fig-
ure 2. The checkPermission method goes backwards
when analyzing the call stack. The three last methods
ClassLoader(), checkCreateClassLoader() and
checkCreateClassLoader() are from system classes
and thus, have all permissions. Method main(), how-
ever, is from of an untrusted class, and does not have
the CREATE_CLASSLOADER permission. Thus, check-
Permission throws a SecurityException, which pre-
vents the ClassLoader from being instantiated.

III. UNINITIALIZED INSTANCE VULNERABILITY

A. What it is

An invalid object initialization vulnerability enables the
creation of an object which is not properly initialized. In the
case of Java, this means that the chain of calls to constructors
is broken resulting in some constructor methods not being
called. The consequences are the following:
• code that should be executed may not be executed
• fields that should be initialized may not be initialized and

may thus end up having “default” values (e.g., null for
references)

Take the example of Figure 3 representing the class hierar-
chy of hypothetical Java library classes A, B and C. In this
example, class C extends A and classes A and B both extend
Object. In a normal program instantiating a new object of type
C, the constructor of C starts executing. The first instruction
of the constructor actually calls the constructor of A (Figure 4
line 11 right) which immediately calls the constructor of
Object (Figure 4 line 10 left). When the constructor of Object
terminates, the execution goes back in the constructor of A
which continues and terminates. Finally, the constructor C
continues and also terminates.

An invalid object initialization vulnerability allows to create
an instance of an object whose constructor will not call
the constructor of its super class (e.g., by exploiting a bug
in the bytecode verifier). More concretely, if we have class
E extending A and class D extending B (Figure 3), the
vulnerability allows to create objects of type E without calling
A’s constructor or objects of type D without calling B’s
constructor.

Tr
us

te
d

Object

A B

C DE

Untrusted

Fig. 3. Class hierarchy for Java library classes A, B and C (representing
trusted code) and application defined classes D and E (representing untrusted
code).

1 c l a s s O b j e c t {
2 <i n i t >() {
3 . . .
4 }
5 }
6
7 c l a s s A {
8 boo l f o r b i d d e n ;
9 <i n i t >() {

10 super ( ) ;
11 f o r b i d d e n = t rue ;
12 . . .
13 }
14 void m( ) {
15 i f ( f o r b i d d e n ) {
16 re turn ;
17 }
18 . . .
19 }

1 c l a s s B {
2 <i n i t >() {
3 super ( ) ;
4 c h e c k P e r m i s s i o n ( ” P1 ” ) ;
5 . . .
6 }
7 }
8
9 c l a s s C {

10 <i n i t >() {
11 super ( ) ;
12 . . .
13 }
14 }

Fig. 4. Constructor code for classes Object, A, B and C. Note that
constructor B is checking for permission P1 and method m from class A is
using a field initialized in a constructor for access control.

With an invalid object initialization vulnerability an
analyst can create a subclass whose constructor does
not call the super class constructor.

B. Impact on Security

If access control or other security mechanisms rely on the
value of fields initialized in constructors, an analyst could
be able to bypass them by setting the field values to default
values. Likewise, if security checks are directly performed in
constructor code an analyst may be able to bypass them by
not executing the code.

Figure 4 illustrates these two kinds of vulnerable code.
The authorization check in the constructor is illustrated in the
constructor of class B. If class B has a subclass such as D,
controlled by the analyst, the constructor of B will not be
called from D during an attack. Thus, the permission checked
within the code of the constructor of B will not be called.
The consequence is that the analyst can instantiate objects he
should not be able to because he can bypass permission checks
in the code of their constructors. Without the invalid object
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initialization vulnerability, the instantiation of such object
would have thrown a security exception at runtime.

In the original Princeton attack [22], the invalid object
initialization vulnerability was used to call a normally un-
reachable method to define an analyst controlled class with
all privileges. This class then disables the security manager to
bypass the Java sandbox. The normally unreachable method in
question is defineClass from the ClassLoader class.
This method is protected and can thus only be accessed
from subclasses. Since the constructors of ClassLoader
are checking that the caller has the appropriate permission,
an analyst (running code in a sandbox without permission)
should not be able to create a subclass. However, with the
invalid object initialization vulnerability, the analyst bypasses
the permission check when he creates a subclass and can
thus have access to the defineClass method to bypass the
sandbox.

For the sake of completeness, we also describe here the
impact of uninitialized fields. The field used as condition for
access control is illustrated in method A.m (lines 14-18, left).
If class A has a subclass such as E, controlled by the analyst,
the constructor of E will not call the constructor of A. The
consequence is that field forbidden will have the default
value of false. Any subsequent call to method A.m will
succeed since the access control check is bypassed. Note that
we assume it is bad practice and quite rare to use fields for
access control within the Java sandbox. Finding such fields is
thus out of the scope of this paper.

Not calling the super class constructor allows an analyst
to create a subclass S which bypasses security checks
done in S’s superclass constructor’s code and hence
allows the analyst to have access to privileged methods
of the superclass.

C. Vulnerability History

As far as we know, there are at least three publicly known
invalid object initialization vulnerabilities for Java. The first
publicly known invalid object initialization vulnerability has
been found by a research group at Princeton in 1996 [22].
The vulnerability lies within the bytecode verifier. It allows
for a constructor to catch exceptions thrown by a call to
super() and return a partially initialized object. Note that
at the time of this attack the class loader class did not have
any instance variable. Thus, leveraging the vulnerability to
instantiate a class loader gave a fully initialized class loader
on which any method could be called. The second has been
discovered by LSD 5 in 2002 [26]. The authors also exploited
a vulnerability in the bytecode verifier which enables to not
call the constructor of the super class. They have not been able
to develop an exploit to completely escape the sandbox. They
were able, however, to access the network and read and write
files to the disk. The last one has been made public in 2017
and is CVE-2017-3289. This vulnerability is also a bug in the
bytecode verifier and its description indicates that an analyst
can completely bypass the Java sandbox.

5a security research group called The Last Stage of Delirium

It is not surprising that invalid object initialization vulnera-
bilities are all located within the bytecode verifier. Indeed, it
is the bytecode verifier which is in charge of validating that
constructors do not return uninitialized objects. The code of
the bytecode verifier evolves constantly through refactoring
or the implementation of new functionalities. Unfortunately,
every modification of this code could introduce a bug whose
consequence is that bytecode properties are not properly en-
forced. Hence, by exploiting such a bug, it might be possible to
find a path on which a constructor might return an uninitialized
object. MUSTI detects such uninitialized objects at runtime to
prevent critical attacks which could compromise the security
of the JVM.

D. Concrete Example
In this section, we concretely describe how an analyst

could bypass permission checks by exploiting an invalid object
initialization vulnerability. The real-world concrete context is
the following: the analyst can submit jobs (represented by
Java classes with no permission) to a target Java application
(for instance a Java Applet or the Apache Spark application)
running on a Java VM vulnerable to an invalid object ini-
tialization vulnerability. We use CVE-2017-3289 as the target
vulnerability as this is a recent invalid object initialization
vulnerability. However, the approach is similar with other
invalid object initialization vulnerabilities.

The description of CVE-2017-3289 indicates that ”Success-
ful attacks of this vulnerability can result in takeover of Java
SE, Java SE Embedded.” [8]. This means it is possible to
exploit the vulnerability to escape the Java sandbox (and thus
bypass all permission checks). Redhat’s bugzilla indicates that
”An insecure class construction flaw, related to the incorrect
handling of exception stack frames, was found in the Hotspot
component of OpenJDK. An untrusted Java application or
applet could use this flaw to bypass Java sandbox restric-
tions.” [2]. This informs the analyst that (1) the vulnerability
lies in C/C++ code (Hotspot is the name of the Java VM)
and that (2) the vulnerability is related to an illegal class
construction and to exception stack frames. Information (2)
indicates that the vulnerability is probably in the C/C++ code
checking the validity of the bytecode. The page also links at
the OpenJDK’s patch for this vulnerability.

We reverse engineered the patch (see our technical report
for more details [15]) and were able to create a working
exploit code illustrated in Figure 5. An analyst can use this
code to subclass, for instance, a system class which checks
for permission P in its constructor. When the subclass is
instantiated, the constructor of the superclass (in our case, the
system class constructor checking for permission P ) is not
executed. Thus, the analyst now has an instance of the system
class and can call method on this instance even though this
should not have been possible because the analyst’s code has
no permission.

As presented in Section II, Java permission protect system
elements such as the filesystem, network or code execution.
By exploiting invalid object initialization vulnerabilities, an
analyst could – without any permission – access the filesys-
tem, network or execute arbitrary code. More concretely, by
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1 <i n i t >()
2 t r y s t a r t :
3 new ” j a v a / l a n g / Throwable ”
4 dup
5 i n v o k e s p e c i a l ” Throwable .< i n i t >() ”
6 athrow
7 / / l o c a l s [ 0 ] = UNINITIALIZED THIS
8 / / s t a c k [ 0 ] = ” j a v a / l a n g / Throwable ”
9 t r y e n d :

10 h a n d l e r :
11 / / l o c a l s [ 0 ] = TOP
12 / / s t a c k [ 0 ] = ” j a v a / l a n g / Throwable ”
13 re turn

Fig. 5. Proof-of-Concept for exploiting the uninitialized instance vulnerabil-
ity in the bytecode verifier. In this example the constructor returns an instance
that is still flagged with UNINITIALIZED_THIS.

exploiting the vulnerability, an analyst is able to, for instance,
instantiate his own classloader by bypassing the permission
check (see the java.lang.ClassLoader constructor in
Figure 1 as well as the concrete code here: https://github.
com/Alexandre-Bartel/attack-musti) and would thus be able
to define his own classes with all permissions. This is the
reason why the vulnerability has been classified as critical by
Oracle.

E. A Threat for which Software Environments?

Invalid object initialization vulnerabilities might only affect
object-oriented languages such as Java or C++. Furthermore,
invalid object initialization vulnerabilities we target in this
paper can only be found in systems such as the JVM which
provide a sandbox running in the same process and written in
the same language as the “untrusted” code. We are aware of
a similar sandboxing system at least for Microsoft’s C#.

In contrast, in the “Android” world where applications are
also running on a Java-like VM, authorization checks are not
done on the same VM as the “untrusted” code (applications)
but in another process [18]. Thus, an invalid object initializa-
tion vulnerability could not impact the authorization checks
(unless the checks rely on objects that the untrusted code can
create, but this would not make much sense). In a nutshell,
and as far as we know, this kind of vulnerability currently
mainly affects all implementations of the Java virtual machine
such as Oracle’s OpenJDK, IBM’s J9 [4] or Excelsior JET [3]
as well as all applications running on top of the VM allowing
“untrusted code” to run in the sandbox. In theory, it could also
affect the C# virtual machine [32], but no such vulnerability
has yet been found. The process of initializing objects in the
C# bytecode being simpler, the code might contain less bugs
and thus less vulnerabilities. Last, but not least, it could also
affect all applications running on top of these VMs allowing
“untrusted code” to run in the sandbox.

IV. PREVENTING THE VULNERABILITY

Our generic approach aims at preventing the exploitation
of invalid object initialization vulnerabilities at runtime. We
patch the Java virtual machine to add code which checks that
objects have been correctly initialized, i.e. that the chain of
constructors has not been broken. To understand where to

runtime generated

network

handmade

*.java javac bytecode

class loaderbytecode verifier

Template C1 C2

Execution engines

JVM

Fig. 6. Simplified View of the Java Runtime: The JVM loads bytecode and
may verify it before it is executed by one of the execution engines (Template,
C1 or C2)

patch the virtual machine we first have to understand how
it loads and represents the code. Note that as our solution is
generic, it could be implemented for another object-oriented
language with a similar sandbox system as the Java virtual
machine, for example C# [32].

A. Code Loading in the JVM

As illustrated in Figure 6, the Java Virtual Machine (JVM)
loads only bytecode. The bytecode however, can originate
from multiple sources: compiled by the Java compiler (the
usual), downloaded from the network, generated at runtime,
or assembled manually (typical for exploiting a vulnerability
in the bytecode verifier). The JVM loads the bytecode through
a class loader. The bytecode is usually verified but not for
classes which are deemed “trusted” such as classes in the
packages “java.*”. At runtime, the bytecode of a Java method
is either executed with the template engine, the C1 engine or
the C2 engine. The C1 and C2 engines transform and optimize
the bytecode and execute the resulting code. Which engine
is chosen depends on the number of times the method has
already been executed. The appropriate place to instrument the
bytecode is thus within the class loader. Indeed, this is where
the virtual machine loads all class and creates an internal
representation of the class’ bytecode. Since every bytecode
that is loaded by the JVM has to go through the class loader,
we instrument the bytecode there.

B. Instrumenting Code in the JVM

Naively instrumenting existing bytecode may result in bro-
ken bytecode. Indeed, the instrumented bytecode must verify:
• that branching instruction offsets are still pointing to the

right instruction,
• that try/catch blocks and handlers are still consistent
• that stack map frames 6 are appropriate and still consistent
Our approach is to add one field, is initialized to the

Object class and to modify the bytecode of the constructors

6structures to help type checking the bytecode [10]

https://github.com/Alexandre-Bartel/attack-musti
https://github.com/Alexandre-Bartel/attack-musti
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1 a l o a d 0
2 . . .
3 re turn
4 . . .
5 re turn

1 a l o a d 0
2 a c o n s t 1
3 p u t f i e l d a l l o w i n c o n s t r u c t o r = 1
4 a l o a d 0
5 . . .
6 goto n e w l a b e l
7 . . .
8 goto n e w l a b e l
9 n e w l a b e l :

10 a l o a d 0
11 a c o n s t 1
12 p u t f i e l d i s i n i t i a l i z e d = 1
13 a l o a d 0
14 a c o n s t 0
15 p u t f i e l d a l l o w i n c o n s t r u c t o r = 0

Fig. 7. Constructor Transformation (pseudo bytecode). The original con-
structor code is shown on the left. Transformed or additional code has a gray
background color.

1 a l o a d 0
2 . . .
3 re turn
4 . . .
5 re turn

1 a l o a d 0
2 i n v o k e v i r t u a l i s I n i t ( )
3 i f n e n e w l a b e l
4 new S e c u r i t y E x c e p t i o n
5 a th row
6 n e w l a b e l :
7 a l o a d 0
8 . . .
9 re turn

10 . . .
11 re turn

Fig. 8. Method Transformation (pseudo bytecode). The original method code
is shown on the left. Transformed or additional code has a gray background
color.

of the Object class to initialize the field to true. When a
method is called, it could thus first check that the field is
correctly initialized. If it is, the method is executed normally.
Otherwise, it means that the object on which the method is
called has not been correctly initialized. The method does not
execute and the program stops, for instance by throwing an
exception.

a) Object Constructors Instrumentation: Only con-
structors in java.lang.Object are instrumented. The
modifications are presented in Figure 7. First, code is
prepended to the constructor bytecode to set the field
allow in constructor to true (lines 1 to 3). This allows the
constructor to call methods even if it is not fully initialized
yet. Then, every return instruction is changed to a goto
instruction to branch to the appended code. The appended code
(lines 9 to 15) sets back the field allow in constructor to
false and sets the field is initialized to true indicating that
the object has been correctly initialized.

b) Method Instrumentation: The bytecode transforma-
tion for non-constructor methods is illustrated in Figure 8.
Some code is prepended to the method bytecode to check if
the constructor has been properly initialized (lines 1 and 2).
The check is done via a call to method isInit() which
returns true if the object has been properly initialized. If it
is the case, the method is executed normally (lines 3 and 6).
Otherwise, the method throws a security exception (lines 4
and 5).

C. Implementation of MUSTI

We use the Java virtual machine from OpenJDK 8 update
144 branch 01 (see Appendix A for more details).

We modify method.cpp to add code which modifies
the bytecode of existing methods. We rely on code al-
ready present in the JVM file relocator.cpp to in-
strument the bytecode of methods. In theory, we mod-
ify classFileParser.cpp to add code to instrument
the constructors of the java.lang.Object class. In
practice, as explained in the next paragraph, we modify
classFileParser.cpp to instrument all constructors of
all classes directly extending java.lang.Object. Overall,
the new code accounts for about 2000 lines of C++.

While implementing our solution we faced one major chal-
lenge which is that the java.lang.Object class cannot
be easily modified. According to multiple sources 7 and
our experience, adding a field or a method to this class
would require heavy modification of the Java virtual machine
source code since numerous parameters for this class are
hardcoded throughout the source code of the virtual machine.
We solved this by modifying all classes which immediately
extend java.lang.Object.

V. EVALUATION

In this section, we answer the following research questions:
• RQ1: can MUSTI prevent attacks based on unitialized

instance vulnerabilities?
• RQ2: what is the runtime overhead of MUSTI?
• RQ3: what is the memory overhead?
• RQ4: how many constructors are vulnerable?
All the experiments were performed on a machine with

32Gb of RAM and an Intel Core i7-6700HQ CPU @ 2.60GHz
featuring 8 processors each having 8 cores.

A. RQ1: Preventing Attacks

The main goal of MUSTI is to prevent attacks based on
invalid object initialization. We reverse engineered the patch of
vulnerability CVE-2017-3289 to create an exploit. This exploit
features unprivileged code which leverages the vulnerability
to create an instance of java.lang.ClassLoader. How
the vulnerability has been reversed and the exploit created is
detailed in the technical repport [15].

The exploit code has no permission and can nonetheless
create an instance of java.lang.ClassLoader on a
vulnerable version of the Java virtual machine. However,
in our modified version MUSTI in which we injected the
vulnerable code in the bytecode verifier, the added bytecode
in the java.lang.ClassLoader constructor detects that
the constructor call chain has been broken since the field
is initialized is still set to false. It thus successfully stops
the program before it can leverage the vulnerability.

MUSTI is able to successfully prevent attacks leveraging
invalid object initialization vulnerabilities present within
the bytecode verifier.

7https://stackoverflow.com/add-a-field-to-java-lang-object
https://stackoverflow.com/instrumenting-array-via-java-lang-object

https://stackoverflow.com/questions/3462472/add-a-field-to-java-lang-object
https://stackoverflow.com/questions/14693432/instrumenting-array-via-java-lang-object
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B. RQ2: Runtime Overhead

In Section V-B1 and Section V-B2, we first evaluate MUSTI
on DaCapo [19], a benchmark suite intended as a tool for Java
benchmarking, as well as on two real world Java programs:
Soot [30] and JavaML [14]. For every target test suite or
program, we run the program 50 times in a row in the same
Java virtual machine. We do this to be able to stabilize the
running time of the Java virtual machine. Indeed, the JVM is
quite a complex software which requires to load classes used in
the target program and which comes with many optimizations
to improve the running time. In order to evaluate a target
program in its best optimized version and to remove noise
related to class loading and code optimization, we run it 50
times and use the last 10 runs as representative of the best
optimized version of the program. Every run with 50 iterations
is repeated 10 times. The final version uses the mean running
time of every iteration.

We then evaluate the class loading overhead of MUSTI
based on the DaCapo benchmark in Section V-B3.

1) DaCapo Benchmark: The DaCapo benchmark is not
maintained anymore. Therefore, some of the benchmark’s test
suites are not working against Java 8. Thus, we only rely on
a subset of all the available test suites, namely luindex,
lusearch, pmd and xalan. The first two are based on
Apache Lucene 8: luindex uses lucene to indexes a set
of text documents such as the works of Shakespeare, while
lusearch uses lucene to do a text search of keywords over
text documents. Regarding the two other test suites, pmd
analyzes a set of Java classes to detect potential problems and
xalan transforms Xml documents into Html documents.

We run all the test suites on both the original JVM, orig,
and the modified JVM, MUSTI. We use three different versions
of the modified JVM. In the first version, naive, all methods
of all classes are instrumented. In the second version, opti1,
only methods of classes which are public and non-final are
instrumented 9. In the third version, opti2, only methods of
classes checking for a permission in one of their constructors
are instrumented. How the list of such constructors has been
computed is the topic of RQ4 in Section V-D.

The results are shown in Figure 9 to 12. Figure 9 represents
the results of the experiments for luindex. The first graph
compares the original JVM, orig, (crosses) with the naive
modified JVM, naive (circles). The second graph compares
orig with opti1 while the third one compares orig with opti2.
The overhead is indicated in the three graphs with triangles.
Figure 10 represents the result for lusearch, Figure 11 for
pmd and Figure 12 for xalan.

The first observation is that the overhead (taken on the last
10 runs) decreases from naive and opti1 to opti2. For xalan,
for instance, it goes from 9.3% and 10.2% to 2.04%. For
lusearch it goes from 3.93% and 4.36% to -0.18%. The
last overhead is negative meaning that the modified JVM ran
faster than the original one. The explanation is that since the
run times of orig and modif are very close, it may happen

8http://lucene.apache.org
9An analyst can only create a subclass from a public and non-final class

to perform an invalid object initialization vulnerability attack.
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Fig. 9. luindex naive (up), opti1 (middle) and opti2 (down)

that the average of modif is faster than the average of orig,
hence the negative value close to 0%.

The second observation, is that for the first few runs, modif
has a very high overhead compared to orig. This is explained
by the fact that in the modified JVM, the bytecode of a huge
number of methods is modified which takes time. This is
one of the reason, we execute 50 runs of the same program
in the same virtual machine to get rid of the class loading
impact on the overall running time of the program. This
phenomenon is specially interesting in the case of xalan.
After iteration 18, the overhead goes from more than 150%
down to the range 0-5%. This is not only explained by
the method bytecode modification but also by the numerous
optimizations the virtual machine performs on the bytecode.
These modifications are highly dependent on the number of
execution of the method in question, i.e. the more a method
is executed, the more the JVM tries to optimize its code. It
is likely that for the case of xalan a huge batch of method
is used frequently and ends up being highly optimized at the
18th iteration.

The third observation is that the overhead of opti2 is close
to zero. This means that the modification of the JVM to
detect invalid object initialization has almost no impact on
the runtime of the program.

The fourth observation is that there are bursts of the
overhead. This is especially noticeable in Figure 9. We assume
this is caused by the garbage collector which takes time to
remove all the unused objects and thus increases the running
time for some iterations. The negative effect on the overhead
can be observed both for the original VM and for MUSTI.
Figure 14 illustrates this behavior. At iteration 17, the garbage
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Fig. 10. lusearch naive (up), opti1 (middle) and opti2 (down)

collector runs for the original VM causing the overhead to
be negative. At iteration 19, the garbage collector runs for
MUSTI, causing the overhead to be way higher.

The evaluation on the DaCapo benchmark indicates that
impact of MUSTI on the running time is low and is in
the range 0-3%.

2) Real Java Software: We also evaluate MUSTI on two
real Java programs: Soot [30] a program to analyze and
optimize Java bytecode and Java-ML [14] a machine learning
library. As for the DaCapo benchmark, we run each program
50 times in the same virtual machine to remove noise from
class loading and code optimization. We run Soot with its
Dexpler module [17] to transform the 7Mib Dalvik bytecode
of one Android application to the internal representation of
Soot called Jimple and to output this representation to the file-
system. We run Java-ML on the tutorial examples available
in the source code: random forest, kmeans, store data, Weka
classifier, ARFF loader, Weka clusterer, sampling, feature scor-
ing, feature ranking, feature subset selection, ensemble feature
selection, sparse instance, dataset, dense instance, lib SVM,
self optimizing lib SVM, KNN, naive Bayes, cross validation,
k-dependent Bayes and entropy partitioning. We only run
Soot and Java-ML with opti2, the version of the modified
JVM which yielded the best results (the lower overheads) for
DaCapo. The precise versions of the tools and the Android
application are listed in Appendix A.

Figure 13 represents the results for Soot and Figure 14 for
Java-ML. The overhead average for the last ten runs is -0.9%
for Soot and 0.35 for JavaML.
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Fig. 11. pmd naive (up), opti1 (middle) and opti2 (down)
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Fig. 12. xalan naive (up), opti1 (middle) and opti2 (down)
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Fig. 13. Soot opti2
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Fig. 14. JavaML opti2

The impact of MUSTI on the running time of real world
Java program is low and less than 0.5%.

3) Class Loading Overhead: To evaluate the runtime over-
head of MUSTI’s class loading component (in which we
instrument classes), we measure the CPU time of the JVM
method ClassFileParser.parseClassFile responsi-
ble for loading, initializing and verifying a Java class. The
cumulative loading time of classes from the DaCapo bench-
mark (about 2500 classes) is represented in Figure 15 on the
left. The runtime overhead of class loading is represented in
Figure 15 on the right. The overhead is about 32%. This means
that class loading CPU time increases from 763 µs in the
original JVM to 1011 µs in the modified JVM.

While the overhead appears to be huge, in practice it is
insignificant for three main reasons. First, we did not take
into account the time to read class files from the disk which
is in the order of at least several milliseconds. Second, we
measure the overhead for the naive approach where all classes
are instrumented. In practice, only about 1.33% of the classes
need to be instrumented (see Section V-D). Third, real software
such at Soot runs for several seconds (12 seconds in the
experiment above with Soot). In that case, the class loading
overhead represents less than 1

400%.

C. RQ3: Memory Overhead

To evaluate the memory overhead we analyze the classes
shipped with Java 8 update 144 branch 1. These classes are
the basic Java runtime classes such as java.lang.String
which are present on any Java virtual machine and other
classes such as the ones in packages sun.*, com.sun.*
or javax.*. The total number of classes is 26,610. They
represent approximately 160Mib.

We developed a program based on Soot to count the total
number of instructions in all methods of all classes. For every
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Fig. 15. ClassLoading naive

constructor in a non-final non-private class, we add 3 instruc-
tions for every return instructions as well as 7 instructions
representing the code we append to the constructors. For
every non-final non-private method, we add 8 instructions
representing the code we prepend to the methods.

In total there are 199,499 concrete methods representing
3,927,726 instructions. The maximum overhead for construc-
tors represents 213,395 instructions. The maximum overhead
for the methods represents 997,576 instructions. The total
maximum overhead for method instructions is 30.83%. If
we assume that every instruction makes 10 bytes (an over-
approximation), the memory necessary to represent the byte-
code increases from 37 Mib to 49 Mib. The total size of all
classes (including not only the bytecode of methods, but also
the constant pools, the attributes, etc.) increases from 160 Mib
to 172 Mib which represents a maximum overhead of 7.5%.

In practice, as explained in Section V-D below, only 1.33%
of classes need to be instrumented. Therefore, the overhead
only represents less than 3000 instructions for constructors
and less than 13300 instructions for methods. This represents
an overhead of 159 Kib (0.42%).

The impact of MUSTI on the memory is low. In practice,
new instructions add an overhead 0.42% which, in
typical Java environments, represents less than 200 Kib.

D. RQ4: Vulnerable Code

Through this research question we aim at measuring the
attack surface of the Java Class Library (JCL) for the invalid
object initialization vulnerability. We search for vulnerable
constructor methods and count them. To evaluate the number
of vulnerable constructors, we developed a program based on
Soot [30] to statically analyze the constructors and extract
the permissions they check. The analysis first constructs a
CHA-based [23] call graph starting from the constructors’
methods. Then, it searches the call graph down to a depth
of 6 for methods M checking for a permission (those are
well-defined in the Java documentation [7], [1]). Similarly
to previous work [16], we assume permissions are checked
early in the call-graph. For every M , it performs a context-
sensitive backward analysis to extract the string representing
the permission which is checked.

In total, we identified 938 constructors checking for 36
different kinds of permissions in 353 classes (1.33% of the
26,610 classes of the JDK). Notable vulnerable constructors
are found in classes such as java.lang.ClassLoader
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(see Figure 1) where a permission is checked at a depth of 3, or
in class java.net.DatagramSocket where a permission
is checked at depth 4.

The number of classes actually checking for a permis-
sion in a constructor is small (1.33%) compared to the
total number of classes in the JDK. This information can
be used to optimize the number of classes and methods
to instrument to reduce the runtime and memory over-
heads.

VI. LIMITATIONS

A. Bytecode Length Limit

The JVM restricts the bytecode size for a method to be less
than 65,236 bytes [11]. In our experiments, we have never seen
a method with a bytecode size greater than 25,744 bytes 10.
An analyst could craft such a method to prevent our approach
from updating the bytecode. However, such a huge size for
a method can be trivially detected and trigger a red flag to
stop a potential attack. Furthermore, while our current imple-
mentation updates the bytecode, it could be updated to append
native code when the bytecode is interpreted. This would make
this problem of the bytecode size insignificant. Furthermore,
in the optimized version, MUSTI only instruments system
classes whose constructors are checking for permissions. In
that case, the size of classes crafted by the analyst would have
no influence at all.

B. Field and Method Number Limit

The JVM restricts the number of methods to 65,535 and
the number of fields to 65,535 [9]. Again, we have never seen
classes with more than 1,260 methods 11 and 360 fields 12.
An analyst could craft such a class to prevent our approach
from adding new fields. Nevertheless, this can be detected
at runtime. Moreover, in the optimized version, MUSTI only
instruments system classes. In that case, the number of fields
and methods of classes crafted by the analyst would have no
influence at all.

C. Other Attack Vectors

Our approach was designed to prevent invalid object initial-
ization vulnerabilities. Other attacks based on buffer overflows,
type confusion, confused deputy or other vulnerabilities which
could also compromise the Java virtual machine sandbox are
out of scope of this paper.

VII. DISCUSSION

In this section we first discuss two other approaches to pre-
vent the vulnerability in Section VII-A. We then demonstrate
that bypassing our mitigation technique would require a vul-
nerability more powerful than an invalid object initialization
vulnerability in Section VII-B.

10sun.awt.X11.XKeysym: void <clinit>()
11com.sun.corba.se.impl.logging.ORBUtilSystemException
12com.sun.tools.classfile.Opcode

A. Other Approaches

There are other approaches than the one described in this
paper to prevent the exploitation of invalid object initialization
vulnerabilities at runtime. We discuss them here and highlight
their advantages and drawbacks.

1) Hard-code Checks in Source Code: One approach [6]
which has already been partially implemented in the JCL is
to explicitly hard-code checks for invalid object initialization
instances in Java classes. While it prevents the vulnerability
for being exploited in the updated class, the approach does not
guarantee that all potentially vulnerable classes are protected.
Furthermore, this approach adds noise to the code which
makes it harder to read and to maintain.

2) Patch the bytecode offline: The bytecode could be
patched offline. That is, all .class files could be modified to
add code that will check for broken constructor chains. While
this may reduce the overhead of loading classes, it also comes
with limitations. First, only the bytecode of known classes
can be modified and not the bytecode of classes created and
loaded at runtime and loaded from the network. Second, the
distribution of such code may break other programs which
were not patched to support vulnerability check. Our approach,
MUSTI, implements the checks directly in the JVM to make
sure that the virtual machine state is consistent, i.e. that all
classes are patched.

B. On the Possibility of Bypassing MUSTI

In this section, we informally argue that bypassing MUSTI
would require the use of a vulnerability that can bypass the
Java sandbox. That is to say, our approach works unless there
is a critical vulnerability which would allow the analyst to
bypass all security checks of the sandbox including MUSTI.

1) Private Field Bypass: An analyst could try to set the
field is initialized of an Object instance to true even if
the object has not been correctly initialized. If the analyst
can do that, he has a primitive to break the encapsulation
of private fields of Java objects. He can thus directly modify
the private static volatile SecurityManager
security private field of the System class to disable all
permission checks. He can thus bypass all restrictions of the
Java sandbox, which is absurd.

2) Removing Permission Checks: An analyst could try to
remove permission checks from system classes. If the analyst
can do that it means he has a primitive to modify the bytecode
for system classes which is a primitive more powerful than an
exploit for an invalid object initialization. Thus, the analyst
could define code in system classes to bypass all restrictions
of the Java sandbox including MUSTI, which is absurd.

VIII. RELATED WORK

Object Initialization. Rawtypes [29] is an approach based
on a type system to enforce the proper initialization of
object in Java. Both Rawtypes and MUSTI can guarantee that
objects checking permissions in their constructors are properly
initialized. Rawtypes relies on a static approach which requires
manual work to annotate the code. On the contrary, our
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approach, MUSTI, is dynamic and fully automated. Further-
more, we show that only 1.33% of the Java classes have to
be instrumented when protecting the VM against a sandbox
bypass. The consequence is that, in practice, MUSTI has a
very low runtime and memory overhead. Rawtypes and MUSTI
can also ensure that all objects are properly initialized. In
that case, Rawtypes would require further manual work to
add the adequate annotations and MUSTI would have a higher
overhead since more classes are instrumented.

Freund et al. [25] have also developed a type system to
ensure proper initialization of Java objects. However, the
approach does not guarantee that partially objects cannot be
accessed.
Java Security. Oh et al. [31] analyze CVE-2012-0507, a type
confusion vulnerability, and explain how it has been used by
malware.

Auriemma et al. [24] present techniques to bypass detection
of known Java exploits by security tools. Techniques include
serialization, splitting the exploit in multiple parts or leverag-
ing multiple JVM.

Holzinger et al. [28] have studied public Java exploits.
Their findings highlight that exploits leverage, among others,
the following weaknesses of the Java platform: unauthorized
use of restricted classes, arbitrary class loading and caller
sensitivity. The paper presents the most vulnerable parts of
Java but does not give any solution for preventing attacks based
on the vulnerabilities.

Wang et al. [34] discuss simple techniques to detect Java
exploits. One technique consists in disabling the security
manager and run the suspicious Java code while checking if
it tries to disable the security manager. If it does, there is a
very high probability of it being a Java exploit. While most
proof-of-concepts aim at disabling the security manager, not
all practical attack actually need a security manager set to
null.

Coker et al. [21] evaluates how the security manager is
used in benign applications. Based on this knowledge, they
devise two rules to prevent most of the exploits from working:
the security manager cannot be changed if it has been set
by the application and a class may not directly load a more
privileged class if a security manager is set. This does not
prevent malicious code from bypassing permission checks in
constructors.

Holzinger et al. [27] presented an approach to remove
shortcuts in stack-based access controls. While this improves
the overall security of the JCL by making it much harder to
have confused deputy attacks, it does not prevent attacks based
on the vulnerability presented in this paper.

IX. CONCLUSION

In this paper we have presented an approach, MUSTI, to
prevent the exploitation of invalid object initialization vulner-
abilities. From a security point of view it is essential to protect
against this kind of critical vulnerability since it may allow
to completely bypass the Java sandbox. MUSTI successfully
prevents exploits based on invalid object initialization vulner-
abilities. In practice, our approach has a very low runtime

overhead less than 0.5% and a very low memory overhead
less than 0.45%.

APPENDIX A
SOFTWARE VERSIONS

For the sake of reproducibility, we list below the version
of the programs/libraries/applications/files we used for our
implementation and for the experiments.
• openjdk-8 8u144-b01-1.debian.tar.xz

f0f94bd01397abdd966e64918bf3b350fc8c08b020-
eeeaf386d2dc76ff8554a7 (sha256)

• openjdk-8 8u144-b01.orig.tar.gz
e816e1a8e2fee6ce21335cd8159805bde8e04be1c5-
8214037cf39950fba991e5 (sha256)

• Soot commit
cdef52ed39e849565e60609328017fe4885bd3d7

• Java-ML version 0.1.7
• DaCapo version 9.12
• Android application

a02fe87870ece6e4772db1445670cfc5f06cf7cd5f-
646c457dac4eccb787e6be (sha256)
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Université du Luxembourg, 2018.

[16] Alexandre Bartel, Jacques Klein, Yves Le Traon, and Martin Monper-
rus. Automatically securing permission-based software by reducing
the attack surface: An application to android. In Proceedings of
the 27th IEEE/ACM International Conference on Automated Software
Engineering, pages 274–277. ACM, 2012.

[17] Alexandre Bartel, Jacques Klein, Yves Le Traon, and Martin Monperrus.
Dexpler: converting android dalvik bytecode to jimple for static analysis
with soot. In Proceedings of the ACM SIGPLAN International Workshop
on State of the Art in Java Program analysis, pages 27–38. ACM, 2012.

[18] Alexandre Bartel, Jacques Klein, Martin Monperrus, and Yves Le Traon.
Static analysis for extracting permission checks of a large scale frame-
work: The challenges and solutions for analyzing android. IEEE
Transactions on Software Engineering, 40(6):617–632, 2014.

[19] Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M Khang,
Kathryn S McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,
Daniel Frampton, Samuel Z Guyer, et al. The dacapo benchmarks:
Java benchmarking development and analysis. In ACM Sigplan Notices,
volume 41, pages 169–190. ACM, 2006.

[20] Cristina Cifuentes, Nathan Keynes, John Gough, Diane Corney, Lin Gao,
Manuel Valdiviezo, and Andrew Gross. Translating java into llvm ir to
detect security vulnerabilities. In LLVM Developer Meeting, 2014.

[21] Zack Coker, Michael Maass, Tianyuan Ding, Claire Le Goues, and
Joshua Sunshine. Evaluating the flexibility of the java sandbox. In
Proceedings of the 31st Annual Computer Security Applications Con-
ference, pages 1–10. ACM, 2015.

[22] Drew Dean, Edward W Felten, and Dan S Wallach. Java security:
From hotjava to netscape and beyond. In Security and Privacy, 1996.
Proceedings., 1996 IEEE Symposium on, pages 190–200. IEEE, 1996.

[23] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-
oriented programs using static class hierarchy analysis. In European

Conference on Object-Oriented Programming, pages 77–101. Springer,
1995.

[24] Donato Ferrante and Luigi Auriemma. Reloading java exploits. In Hack
in the Box, 2014.

[25] Stephen N Freund and John C Mitchell. A type system for object
initialization in the Java bytecode language, volume 33. ACM, 1998.

[26] LSD Research Group et al. Java and java virtual machine security,
vulnerabilities and their exploitation techniques. In Black Hat Briefings,
2002.

[27] Philipp Holzinger, Ben Hermann, Johannes Lerch, Eric Bodden, and
Mira Mezini. Hardening java’s access control by abolishing implicit
privilege elevation. In 2017 IEEE Symposium on Security and Privacy
(Oakland S&P), 2017.

[28] Philipp Holzinger, Stephan Triller, Alexandre Bartel, and Eric Bodden.
An in-depth study of more than ten years of java exploitation. In
Proceedings of the 23rd ACM Conference on Computer and Communi-
cations Security (CCS’16), 2016.

[29] Laurent Hubert, Thomas Jensen, Vincent Monfort, and David Pichardie.
Enforcing secure object initialization in java. In European Symposium
on Research in Computer Security, pages 101–115. Springer, 2010.

[30] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. The
soot framework for java program analysis: a retrospective. In Cetus
Users and Compiler Infastructure Workshop (CETUS 2011), volume 15,
page 35, 2011.

[31] Jeong Wook Oh. Recent java exploitation trends and malware. In Black
Hat USA, 2012.

[32] Nathanael Paul and David Evans. Comparing java and .NET security:
Lessons learned and missed. computers & security, 25(5):338–350,
2006.

[33] Jerome H Saltzer. Protection and the control of information sharing in
multics. Communications of the ACM, 17(7):388–402, 1974.

[34] Xinran Wang. An automatic analysis and detection tool for java exploits.
In Virus Bulletin, 2013.


	Introduction
	The Java Security Model
	Security Policy
	Security Domain
	The Security Manager
	Permission Checks

	Uninitialized Instance Vulnerability
	What it is
	Impact on Security
	Vulnerability History
	Concrete Example
	A Threat for which Software Environments?

	Preventing the Vulnerability
	Code Loading in the JVM
	Instrumenting Code in the JVM
	Implementation of Musti

	Evaluation
	RQ1: Preventing Attacks
	RQ2: Runtime Overhead
	DaCapo Benchmark
	Real Java Software
	Class Loading Overhead

	RQ3: Memory Overhead
	RQ4: Vulnerable Code

	Limitations
	Bytecode Length Limit
	Field and Method Number Limit
	Other Attack Vectors

	Discussion
	Other Approaches
	Hard-code Checks in Source Code
	Patch the bytecode offline

	On the Possibility of Bypassing Musti
	Private Field Bypass
	Removing Permission Checks


	Related Work
	Conclusion
	Appendix A: Software Versions
	References

