
An In-depth Study of Java Deserialization Remote-Code
Execution Exploits and Vulnerabilities

IMEN SAYAR†, University of Toulouse, France
ALEXANDRE BARTEL∗, Umeå University, Sweden
ERIC BODDEN, Paderborn University, Germany
YVES LE TRAON, University of Luxembourg, Luxembourg

Nowadays, an increasing number of applications uses deserialization. This technique, based on rebuilding
the instance of objects from serialized byte streams, can be dangerous since it can open the application
to attacks such as remote code execution (RCE) if the data to deserialize is originating from an untrusted
source. Deserialization vulnerabilities are so critical that they are in OWASP’s list of top 10 security risks for
web applications. This is mainly caused by faults in the development process of applications and by flaws
in their dependencies, i.e., flaws in the libraries used by these applications. No previous work has studied
deserialization attacks in-depth: How are they performed? How are weaknesses introduced and patched? And
for how long are vulnerabilities present in the codebase? To yield a deeper understanding of this important kind
of vulnerability, we perform two main analyses: one on attack gadgets, i.e., exploitable pieces of code, present
in Java libraries, and one on vulnerabilities present in Java applications. For the first analysis, we conduct
an exploratory large-scale study by running 256 515 experiments in which we vary the versions of libraries
for each of the 19 publicly available exploits. Such attacks rely on a combination of gadgets present in one or
multiple Java libraries. A gadget is a method which is using objects or fields that can be attacker-controlled.
Our goal is to precisely identify library versions containing gadgets and to understand how gadgets have been
introduced and how they have been patched. We observe that the modification of one innocent-looking detail
in a class – such as making it public – can already introduce a gadget. Furthermore, we noticed that among
the studied libraries, 37.5% are not patched, leaving gadgets available for future attacks.

For the second analysis, we manually analyze 104 deserialization vulnerabilities CVEs to understand how
vulnerabilities are introduced and patched in real-life Java applications. Results indicate that the vulnerabilities
are not always completely patched or that a workaround solution is proposed. With a workaround solution,
applications are still vulnerable since the code itself is unchanged.

Additional Key Words and Phrases: serialization, deserialization, vulnerabilities, gadget, remote code execution
RCE

1 Introduction

Over the past 10 years, the MITRE Corporation [12] registered 364 CVEs linked to deserialization
vulnerabilities1 in several mainstream programming languages such as Java, PHP, and .NET. These
critical vulnerabilities, frequently allowing Remote Code Execution (RCE), are a highly relevant
topic in the research community. For instance, Shcherbakov et al. [62] recently developed an open-
source tool named SerialDetector allowing the detection of deserialization vulnerabilities in .NET
applications. In this paper, we focus on the characterization of Java deserialization vulnerabilities.
These vulnerabilities result because of flaws existing in the applications’ development process or in
the libraries used by these applications.
Java serialization allows transforming class instances into a stream of bytes. Java objects can

therefore be transferred through a network. Deserialization consists of reading the serialized byte
stream in order to rebuild the original instances by loading their fields. While serialization is
1All the queries have been done in June 2021

†Part of this research was conducted when Imen Sayar was at the University of Luxembourg.
∗Part of this research was conducted when Alexandre Bartel was at the University of Luxembourg and the University of
Copenhagen.

2 Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon

convenient to transfer objects between hosts, it presents a danger when the source of the data to
deserialize is untrusted. Indeed, an attacker could craft a byte stream that, when deserialized on
the remote host, could control the execution flow of the Java code by chaining sequences of Java
code called gadgets. A deserialization attack can be performed by leveraging either gadgets present
in the Java Class Library (JCL) or in an external library or by combining many libraries containing
gadgets, that we will refer to as gadget libraries in the remainder of this paper.
Figure 1 shows a simple example of a Java serializable class A characterized by a String field

called command. When calling the writeObject method, suppose that the attacker changes this
field with the Linux command line top (line number 6). The execution of readObject leads to the
call of the gadget Runtime.exec (line 9) which is using the attacker-controlled object command.
1 import java.io.Serializable;
2 import java.lang.Runtime;
3 public class A implements Serializable {
4 String command;
5 private void writeObject() {
6 command = "top"; //the attacker can change this field
7 }
8 private void readObject() {
9 Runtime.exec(command); //the attacker can execute the command
10 }
11 }

Fig. 1. A simple example of a serializable class. In this class, the attacker can modify the command field. Thus,
during deserialization, when the JVM calls A.readObject() method, the attacker command will be executed
instead of “top”.

In 2015, Frohoff and Lawrence demonstrated how to exploit unsafe Java deserialization vulnera-
bilities [38]. The same year, Litchfield [54] and Stepankin [65] identified an RCE Java deserialization
vulnerability in one of PayPal’s critical applications, the manager portal2 which could allow at-
tackers to reach production databases. In 2016, an attacker took control of 2 000 computers of
the Metropolitan Transport Agency of San Francisco through a Java deserialization vulnerability
in the Web server [24]. Equifax3 had one of its worst bugs in 2017 when attackers infiltrated
its network and stole the personal information of 147.7 million Americans from its servers. The
entry point of this attack was CVE-2017-9805, a Java deserialization vulnerability in Apache Struts’
web application [43]. All these concrete real-world examples support the conclusion of multiple
studies [4, 66] ranking insecure deserialization in the top 10 of the most dangerous web application
security vulnerabilities. More precisely, in 2021, OWASP classifies this kind of vulnerability in the
8th position after other dangerous vulnerabilities like Cross-Site Scripting (XSS) [52] -classified
as the third most dangerous vulnerability- or buffer overflow [51]. We study this problem of de-
serialization attacks because - compared to other vulnerabilities- a deserialization attack is able
to completely control the victim systems or to give place to ransomware attacks. For instance, on
one hand, a buffer overflow on modern operating systems will not give the attacker anything on
its own because it needs to be chained with at least an information leak and other vulnerabilities
to bypass other mitigation techniques. On the other hand, a deserialization vulnerability is at a
higher level and might allow the attacker a complete control over the target system. Another
important aspect is that "dormant" serialization vulnerabilities can be super easily enabled, once
new gadgets are accidentally introduced. To our point of view, it is much more subtle than other
kinds of vulnerabilities such as injections.

In this paper, we study Java gadgets and Java deserialization vulnerabilities found in real-world
applications leveraging the standard Java deserialization mechanism [56]. The first study is based
2manager.paypal.com
3https://www.equifax.com/

manager.paypal.com
https://www.equifax.com/

An In-depth Study of Java Deserialization Remote-Code Execution Exploits and Vulnerabilities 3

on the analysis of gadgets from 19 publicly available remote code execution (RCE) attacks from
the ysoserial Github repository [21]. Ysoserial is a project that gives a proof of concept tool and
provides 34 Java payloads exploited in publicly known deserialization attacks. These latter are
carried out by chaining gadgets. In this paper, we focus on 19 RCE attacks representing the majority
of the ysoserial attacks. Our study is limited to this kind of attacks because we have developed
a framework detecting RCE attacks only. The second study is based on the manual analysis of
77 Java applications impacted by a Java deserialization vulnerability described in a CVE 4. We found
that for all attacks relying on a single gadget library, this library has been patched. The patching
action can impact one or many gadget libraries involved in an attack, i.e., when the attack relies on
multiple gadget libraries, patching a single library may be sufficient to avoid this attack. Yet, the
non-patched gadget libraries can often still be leveraged later if they can be combined with other
gadgets. Thus, even though they might not lead to an exploitable software at the time, they do
increase the attackers’ capabilities, thus weakening the software system. One aspect of our analysis
is the detection of recent gadget library versions. This is relevant since it points to recent library
versions non-cited in ysoserial repository, like the commons-beanutils, that still contain gadgets.
This may alert developers to be aware of these gadgets’ library versions if used in the classpath of
their applications and to check if the concerned library versions are mentioned as gadgets ones in
CVEs database.

Furthermore, this paper analyzes how gadgets are introduced into libraries—an important point
that previous pieces of research did not explicitly address. When analyzing the 19 RCE exploits,
we have identified several ways to introduce a gadget in a library: adding classes, methods, and
interfaces, or changing the signature of methods. Our main conclusion is that the modification of
one innocent-looking detail in a class – such as making it public – can already introduce a gadget.
When studying patches of such libraries, we observed that the time used to remove gadgets varies
between several months and almost 12 years, with an average of almost six years. It thus appears
that deserialization vulnerabilities do not yet get the attention of practitioners that they should
actually deserve.
The study on Java applications clearly shows that developers should never write code that

deserializes data from an untrusted source because it becomes an obvious entry point for attackers.
Solutions exist to prevent knows attacks, e.g. allow/deny lists, but they are not fool-proof, as the
complete list of gadgets present in Java libraries is unknown. Interestingly enough, for 24.1% of the
studied CVEs, the solution that has been selected to prevent the exploitation of the vulnerability
is not a code change but a workaround. Workarounds work well on an already deployed system,
however, they might not be applied in new deployments or in a new software environment, which
makes the vulnerability accessible to the attacker again.

This paper is concerned with how deserialization vulnerabilities in Java manifest in practice. We
present the following contributions:

• We conduct a large-scale study on more than 256 515 combinations of 14 libraries, rep-
resenting 19 publicly known Java deserialization RCE exploits, and 147 Java runtimes to
understand which precise library versions introduce gadgets, how they are patched, and the
structure of attacks in terms of gadgets. A thorough description of the experimental proce-
dure used to obtain the experimentation data, including how test subjects were collected, is
also described.

• We detail how deserialization gadgets are introduced in the libraries. To our knowledge,
this is the first work to consider how deserialization vulnerabilities manifest in real code

4CVE refers to Commons Vulnerabilities Exposures. According to theMitre terminology, a CVE is identified using an IDwhich
is "a unique, alphanumeric identifier assigned by the CVE Program. Each identifier references a specific vulnerability." [30, 31]

4 Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon

bases and libraries. This provides some insight into how these vulnerabilities are commonly
treated outside of academia.

• Based on the results of our analysis on how gadgets are introduced, we propose recommen-
dations for library developers to prevent the introduction of gadgets.

• We perform a study of the patching time of some libraries and show that it can sometimes
take over 10 years.

• We perform an analysis of 104 Mitre CVEs that concern deserialization vulnerabilities in
Java applications and conclude that not all the patches prevent the attacks and protect the
applications.

The remainder of this paper is organized as follows. Section 2 presents background about
essential concepts related to Java deserialization vulnerabilities and uses an example to explain
how a deserialization attack can be performed. Section 3 explains our methodology and details our
two analyses: the large-scale study about attack gadgets present in Java libraries and the analysis of
vulnerabilities present in Java applications with regard to the libraries and JVM versions. Take-away
messages and lessons learned from our analyses are described in Section 4. Section 5 points on
the limitations of our approach. The state of the art is discussed in Section 6. Finally, Section 7
concludes this work.

2 Background

2.1 Terminology

Before starting the study of Java deserialization attacks, we define the terminology used all along
this paper.

Vulnerability. We use Mitre’s definition [13]: "[A vulnerability is] a flaw in a software, firmware,
hardware, or service component resulting from a weakness that can be exploited, causing a negative
impact to the confidentiality, integrity, or availability of an impacted component or components.".

Gadget and gadget chain. In the context of this paper, a gadget is a Java method using objects
or fields that can be attacker-controlled. A gadget chain is a malicious sequence of method (gadget)
calls created by an attacker. The presence of a set of gadgets in the classpath of a vulnerable
application is one of the conditions required to carry out deserialization attacks.

Deserialization vulnerability in Java. A Java deserialization vulnerability is a weakness in
the code that can be exploited when the Java code deserializes an attacker-controlled byte stream.
Facilitated attacks, such as arbitrary code execution, have an impact on the confidentiality, integrity,
or availability of the system. For instance, a readObject method present in a Java program is a
weakness that is considered to be a vulnerability when: (1) the program containing this method
accepts and deserializes data from a source that an attacker can control, and (2) the attacker can
exploit this weakness. In practice (2) requires one to build a gadget chain and thus requires all
necessary gadgets to be in classes that are on the classpath of the vulnerable application. Note that
classes containing gadgets do not need to be used by the vulnerable program, just must be loadable.

Gadget library. By a gadget library, we denote a Java library containing one or more gadgets.
A gadget can be used during a deserialization attack when the corresponding gadget library is
included in the classpath of the vulnerable application.

Exploit. An exploit is a piece of software or a sequence of commands that takes advantage of a
bug or vulnerability causing a negative impact on the confidentiality, integrity, or availability of an
impacted component or components.

An In-depth Study of Java Deserialization Remote-Code Execution Exploits and Vulnerabilities 5

Patch. The National Institute of Standards and Technology (NIST) [67] defines a patch as “a
"repair job" for a piece of programming; also known as a "fix". A patch is the immediate solution to an
identified problem that is provided to users”. The patch of a library “is not necessarily the best solution
for the problem, and the product developers often find a better solution to provide when they package
the product for its next release.”

In the context of Java deserialization vulnerabilities, there are two kinds of patches: patches for
vulnerabilities and patches for gadgets. Patching a gadget library requires one to remove gadgets,
thereby disabling attacks relying on this gadget library. While authors of libraries sometimes
decide to make exploitation harder by patching gadget libraries involved in attacks, gadgets
are ultimately not flaws on their own. Most importantly, the gadgets are not themselves the
deserialization vulnerabilities, they are rather pieces of code that facilitate the successful exploitation
of a deserialization vulnerability that itself frequently resides in application code, not library code.
One can draw a parallel with memory-corruption vulnerabilities. Shacham [60] mentioned that
libraries leveraged to exploit a memory corruption vulnerability are the “innocent flesh on the
bone”. Thus, it is not surprising that they are rarely patched to address the issue. Patches for gadget
libraries are similar to the heap-hardening [26, 36, 70] introduced in memory allocators in response
to heap-based buffer overflow exploit techniques: they do not patch heap-based buffer overflows,
yet they hinder exploitation techniques that have become publicly known.

Deserialization attacks. They are performed using two main steps: (1) an ahead-of-time serial-
ization step during which the attacker builds a customized byte stream specially crafted to execute
a chain of gadgets during deserialization and (2) an online deserialization step executed on the
victim’s vulnerable machine, and during which this victim’s machine will deserialize objects from
the attacker-controlled byte stream and thus execute the gadget chain.

Illustration. Let us use the example of Figure 2 to clarify the terminology. Assume that there is a
library called libA.jar containing class A of Figure 2a. As explained previously in the example of
section 1, the command field of type String of class A can be attacker-controlled. This class contains
a gadget: Runtime.exec (line 19) called through another gadget readObject of the same class
A. The chain A.readObject → Runtime.exec is a gadget chain. The libA.jar library contains
these two gadgets and is then considered as a gadget library. Now suppose that there is a program
VictimClass using libA.jar in its classpath as shown in Figure 2b. The vulnerability in this
context is that the code uses the readObject to deserialize objects from an untrusted source and
that the gadget library libA.jar is in the classpath of VictimClass. An exploit may consist in
generating a file f by an attacker in which he/she controls the field command and through which
(i.e., when it is given as args[0] in line 6 of VictimClass.main()) he/she can execute a command
"calc.exe" for instance. The most secure patch for this vulnerability is to not deserialize the
untrusted file f. But, another possible patch consisting in removing the class A from the classpath
of the program VictimClass is sufficient to prevent this particular deserialization attack.

2.2 Overview of Typical Deserialization Attacks

The requirement for this attack is that the victim machine runs software that deserializes objects
from an untrusted byte stream controlled by the attacker. In a first step, the attacker crafts a specific
serialized file 𝑠 representing a class instance 𝑖 . Then the attacker sends 𝑠 to the victim either directly
or through the network. Once received, the file is deserialized with a readObject method to try to
reconstruct instance 𝑖 . The attack takes place during this deserialization process, when the Java
code, relying on the attacker-controlled data in the byte stream, executes the attacker’s payload.
This payload then, for instance, may execute arbitrary code with the process’ privileges through

6 Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon

1 /* Class A is in libA.jar */
2 public class A implements Serializable {
3 // the attacker can change the value of
4 // the 'command' field during serialization
5 String command;
6
7 // in class 'A', the 'command' field
8 // could be restricted to, e.g., a few values.
9 // This does not prevent the attacker from
10 // changing the field to a value of the attacker
11 // choice during serialization
12 [...]
13
14 private void readObject() {
15 // this code is executed during deserialization
16 // if the attacker controls 'command', he/she
17 // can execute arbitrary code on the machine
18 // deserializing an instance of type 'A'
19 Runtime.exec(command);
20 }
21 }

(a) A vulnerable class. (This sub-figure is a modified
version of Figure 1.)

1 /* libA.jar is in the classpath of the
2 JVM running VictimClass.main() */
3 public class VictimClass implements Serializable {
4 public static void main (String[] args)
5 FileInputStream fis =
6 new FileInputStream(args[0]);
7 ObjectInputStream ois =
8 new ObjectInputStream (fis);
9 // if the attacker gives an object of type 'A'
10 // to deserialize, A.readObject is executed
11 // before the cast to (String)
12 String s = (String) ois.readObject();
13 ois.close();
14 }
15 }

(b) A class deserializing an input file.

Fig. 2. Explanatory example for the terminology.

15 Runtime.exec() // (7)
14 NativeMethodAccessorImpl.invoke0()
13 NativeMethodAccessorImpl.invoke()
12 DelegatingMethodAccessorImpl.invoke()
11 Method.invoke() // (6)
10 InvokerTransformer.transform() // (5)
9 ChainedTransformer.transform() // (4) (d)
8 LazyMap.get() // (3) (c)
7 AnnotationInvocationHandler.invoke() // (2)
6 $Proxy0.entrySet() // (2) (b)
5 AnnotationInvocationHandler.readObject() // (1) (a)
4 [...] // internal JVM code
3 ObjectInputStream.readObject0()
2 ObjectInputStream.readObject()
1 VictimClass.main(String[])

Fig. 3. Abstraction of call stack of the CommonsCollections1 attack.

a call to Runtime.exec(). An attack only works if the victim’s Java process has all the required
vulnerable classes on its classpath.

Transforming a class instance 𝑖 into a byte stream is called serialization. The basic principle of
deserialization is to rebuild the same class instance 𝑖 from the byte sequence. Figure 2b shows a short
code snippet to illustrate the deserialization process in Java. This generic Java code represents the
software running on the victim machine. To simplify the code, the byte stream is read from a file and
not from the network as in Figure 2b. The first and only argument passed to this program is a path
to a file that represents the serialized data to deserialize. The Java code opens this file and calls the
method readObject() to deserialize its content (line 12 in Figure 2b). Observe that while there is a
cast to String, the attacker could put a different object type to deserialize. Indeed, deserialization
attacks are triggered during deserialization. The cast to the proper type (here String) is only
executed after the byte stream has been deserialized. Thus, the cast operation is executed too late
and does not prevent an attack. Observe also that there is no change of the methods readObject()
and writeObject() signatures or code. The only changes concern the fields accessible to the
attacker.

An In-depth Study of Java Deserialization Remote-Code Execution Exploits and Vulnerabilities 7

2.3 A Concrete Real-World Example
In this section, we describe the CommonsCollections1 deserialization attack (from the ysose-

rial repository [21]). More precisely, we analyze what happens when the attack of CommonsCol-
lections1 is exploited. The gadgets are present in the 3.1, 3.2 and, 3.2.1 versions of apache
commons-collections library.

Fig. 4. Components of the serialized byte stream generated by the ysoserial tool and which will be deserialized
by the victim class in Figure 2b.

As shown in Figure 4, the serialized byte stream s generated for this attack features four main
objects: (a) an AnnotationInvocationHandler, (b) a Proxy, (c) a LazyMap, and (d) an array of
Transformers (a ChainedTransformer object). The fields of each concrete object in the byte
stream are controlled by the attacker. During deserialization, the Java code might choose to execute
a branch based on the value of the fields controlled by the attacker. Furthermore, the Java code
might call methods using fields controlled by the attacker. The latter can thus control part of the
execution flow. In the CommonsCollections1 attack, objects (a-d) - of both Figures 3 and 4 - are
chained to trigger the execution of the Runtime.exec() method with an attacker-controlled value
to achieve arbitrary code execution. The call stack of this attack - when its payload is executed - is
represented in Figure 3. This call stack is composed of a chain of gadgets. A gadget is a method
using objects or fields that can be attacker-controlled. To simplify Figure 3, we do not consider the
native calls related to Java reflection or the internal workings of the JVM. In the attack in this figure,
we consider that there are 7 gadgets: (1) AnnotationInvocationHandler.readObject() which
is the head, or the entry gadget, of the chain, (2) $Proxy0.entrySet(), (3) LazyMap.get(), (4)
ChainedTransformer.transform(), (5) InvokerTransformer.transform(), (6) Method.invo-
ke() which we consider as an attack gadget and (7) Runtime.exec() representing the last gadget,
the performed attack action. An attack gadget is a method call that triggers the payload. In this
running example, Method.invoke() calls Runtime.exec() via reflection.
In this paragraph, we explain step-by-step the different calls in the gadgets chain. When the

victim application, represented by the code in Figure 2b, deserializes the s byte stream by calling
readObject (stack frame 1 in Figure 3), the internal JVM code handling the deserialization is
executed (stack frames 2, 3 and 4). Range 4 represents 7 hidden method calls. We do not show
them since they represent the internal JVM code related to Java reflection. This leads to a call of
the readObject() method of the first object to deserialize, which is an AnnotationInvocation-
Handler (stack frame 5). In the code of this method, there is a field this.memberValues initialized
by a $Proxy0. This is the reason for calling $Proxy0.entrySet() (frame 6).
A Proxy in Java is a class generated during runtime to implement interfaces. It is associated

with an invocation manager represented by the InvocationHandler class. The JVM uses reflection

8 Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon

to redirect any method calling a Proxy to the invoke() method of the interface implemented by
this Proxy. This explains the jump from $Proxy0.entrySet() to AnnotationInvocationHand-
ler.invoke() (stack frame 7). This method invoke() will look for which method to call. This
information is extracted from the serialized s byte stream in which there is a field initialized by
the value LazyMap, a class of the commons-collections library. This value is assigned to a field
called this.memberValues in the invoke method. This leads to the call of LazyMap.get() (stack
frame 8). Until now, the LazyMap is empty. For this reason, the get() method uses a call to a
factory.transform() method in order to decorate the LazyMap. Again here, the factory field
is extracted from the serialized s byte stream and is assigned to a ChainedTransformer lead-
ing to the call of ChainedTransformer.transform() (stack frame 9). A ChainedTransformer
implements the Transformer interface and contains four transformers: its first element is a
ConstantTransformer which is equal to any constant chosen by the attacker, its three subsequent
elements are InvokerTransformers and each one of them will take the output of the previous
one and transform it. The last InvokerTransformer will transform the attacker command (stack
frame 10) into an invoke - by reflection - of Runtime.exec() (stack frames 11 to 15). This attack
is using the Transformers objects. A Transformer is an interface in Java implemented by one or
more other classes that transforms an input object into an output object. Among these classes
are ConstantTransformer and InvokerTransformer. Both of them are implementations of the
Transformer interface. The former allows to always return the same constant without checking
the input object. The latter allows the creation of a new object by reflection and the invocation of a
method defined in the class of this object.
The commons-collections library has been patched in version 3.2.2. by adding a check on the

InvokerTransformer object when calling its transform() method (line 10 of the call stack). A
checkUnsafeSerialization method checks whether serialization is enabled for unsafe classes
like the Transformer. Otherwise, an exception is thrown. Observe that the library has been patched
by changing the code of a single gadget (out of the four gadgets required for the attack). While this
prevents this attack, it does not prevent the reuse of the three untouched gadgets in future attacks.
3 Experimentation and Evaluation
3.1 Methodology

In this part, we explain how we proceed to perform the two types of analysis: on gadgets and on
real-world Java applications.
3.1.1 Gadgets analysis

Collecting the dataset. Our experiments involve several elements: the ysoserial tool, libraries, and
JVM versions.

First, since we are referring to attacks that are using malicious files generated by the ysoserial
tool, we download this tool [21]. Second, we list all the libraries involved in the 19 studied ysoserial
attacks. For these attacks, there are 14 libraries involved. We download all the available versions
of each library. In total, we have a set of 1,410 jars for all 14 libraries. Note that each library can
have hundreds of versions. For example, there is an attack called Groovy1 which is using the
Apache Groovy library. We have downloaded 192 versions of this library. We have downloaded
all the libraries’ jars in September 2020. The third element of our study is the JVM. They can be
downloaded from the Oracle [46], IBM [11], and the AdoptOpenJDK [44] websites. We obtained a
dataset of 147 JVM versions containing 137 Oracle and 10 IBM and OpenJdk versions.
Our work aims at: (1) understanding how deserialization gadgets are introduced and patched

in libraries and (2) collecting the list of gadget library versions. The second goal is primordial
in our work. Indeed, the studied ysoserial attacks are described for only some specific libraries
and JVM versions, yet, we have discovered that most gadgets are still present in non-mentioned
libraries/JVM versions.

An In-depth Study of Java Deserialization Remote-Code Execution Exploits and Vulnerabilities 9

Experimental Setup. In practice, we simulate a Java deserialization attack 𝐴 by following three
steps: (1) generate a malicious serialized file𝑀𝑆 corresponding to the specific attack 𝐴 using the
ysoserial tool; (2) create an application including a victim class 𝑉 that deserializes the malicious
input file𝑀𝑆 generated in step (1) using the ObjectInputStream.readObject() method; (3) add
the gadget library(ies) i.e., libraries containing the required gadgets for the attack in the classpath
and run the victim class 𝑉 .

Note that even if the program deserializing data from an untrusted source does not directly use
classes containing gadgets, it is nonetheless vulnerable if these classes are on its classpath. This is
because these classes can be referenced during deserialization. For instance, the code of Figure 2b
does not directly use the LazyMap class. However, we observe a call to the method get() on an in-
stance of this class in the call stack of Figure 3 (call frame number 8) since the commons-collections
library (containing this class) is defined in the classpath of this victim code.

We combine the JVM version (an attack gadget might be present in a JVM) with the libraries of
the attack and run 256 515 programs. Consider an attack A using a library l. Suppose that l has n
versions. For A, we run 147 × 𝑛 executions. This means that we run each library version on all the
147 JVMs that we have collected. In another case, an attack B can use 𝑛𝑏𝑙𝑖𝑏𝑠 > 1 libraries. Suppose
that each library l𝑖 of them has nbVers[l𝑖] versions. The total number of executions is the sum of all
the executions per library involved in the attack i.e.,

147 × 𝑛𝑏𝑉𝑒𝑟𝑠 [𝑙1] + . . . + 147 × 𝑛𝑏𝑉𝑒𝑟𝑠 [𝑙𝑖] + . . . + 147 × 𝑛𝑏𝑉𝑒𝑟𝑠 [𝑙𝑛𝑏𝑙𝑖𝑏𝑠]
In other terms, for each attack relying on 𝑛 library (n > 1), we variate one library at once i.e., we fix
(𝑛 − 1) library versions that are vulnerable in the studied attack and we variate the versions of the
remaining library.
Table 1 explains where this 256 515 number is coming from: it results from the addition of all

the numbers of executions per attack. For instance, the CommonsBeanUtils1 attack relies on three
libraries: commons-beanutils having 33 versions, commons-collections having 13 versions and
commons-logging having 10 versions. For each one of these libraries, we did 147 × 𝑛 executions,
where n defines the number of versions. At the end, we perform 147×33+147×13+147×10 = 8232
executions for this attack. Our goal is to check if these attacks still are possible with these variants
and understand what has changed to allow or block the attacks.
We developed a framework to automatically run our experiments and collect the results in log

files correlated to each attack. For a single attack, there are thousands of log files. Our scripts
consist of testing if the concerned combination (of the JVM and the library(ies) versions) allows
two actions to be performed: the serialization and the deserialization. If the serialization fails, the
deserialization step cannot take place.
We run all experiments on a machine with 12 x Intel(R) Xeon(R) Bronze 3104 CPU 1.70GHz,

256G of RAM, and the Debian 10.4 OS.

Analyzing the results. The results obtained from our experiments are analyzed by:
• generating a table for each attack. In each table, we have the versions of the JVM and of
the implicated library(ies). Such table is composed of colored squares with symbols: if the
attack is successful the square is colored with red and contains the 0 number, otherwise,
it is a fail. The failure of an attack might be caused by one of the three reasons: (1) the
serialization is performed but the deserialization fails (orange color and the 1 number) or
(2) the serialization fails because of "Unsupported major.minor version" (yellow color and V
symbol) or (3) the serialization fails because of an "Error while generating or serializing
payload" generated by ysoserial (green color and - symbol);

10 Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon

Table 1. Studied attacks and the number of experiments per attack

Attack name Lib name # lib versions # experiments per lib # experiments per attack Total

BeanShell1 beanshell 16 147 x 16 = 2352 2352

256515

Clojure clojure 145 147 x 145 = 21315 21315

CommonsBeanUtils1
commons-beanutils 33 147 x 33 = 4851

4851 + 1911 + 1470 = 8232commons-collections 13 147 x 13 = 1911
commons-logging 10 147 x 10 = 1470

CommonsCollections1 commons-collections 13 147 x 13 = 1911 1911
CommonsCollections2 commons-collections 13 147 x 13 = 1911 1911
CommonsCollections3 commons-collections 13 147 x 13 = 1911 1911
CommonsCollections4 commons-collections 13 147 x 13 = 1911 1911
CommonsCollections5 commons-collections 13 147 x 13 = 1911 1911
CommonsCollections6 commons-collections 13 147 x 13 = 1911 1911
CommonsCollections7 commons-collections 13 147 x 13 = 1911 1911
Groovy1 groovy 192 147 x 192 = 28224 28224
ROME rome 12 147 x 12 = 1764 1764
MozillaRhino1 js-rhino 26 147 x 26 = 3822 3822
MozillaRhino2 js-rhino 26 147 x 26 = 3822 3822

Spring1 spring-beans 180 147 x 180 = 26460 26460 + 27342 = 53802spring-core 186 147 x 186 = 27342

Spring2

spring-core 186 147 x 186 = 27342

27342 + 294 + 1470 + 27930 = 57036aopalliance 2 147 x 2 = 294
commons-logging 10 147 x 10 = 1470
spring-aop 190 147 x 190 = 27930

Click1 click-nodeps 8 147 x 8 = 1176 1176 + 2940 = 4116javax-servlet 20 147 x 20 = 2940

Vaadin1 vaadin-server 199 147 x 199 = 29253 29253 + 29253 = 58506vaadin-shared 199 147 x 199 = 29253
JDK7U21 147 147 x 1 = 147 147

• then, filtering the results for the failed attacks. Here distinguish between two reasons: either
the serialization fails and there is no serialized file to read or the serialization succeeded but
the deserialization fails.

The list of URLs used to download libraries used in the experiments as well as the tables generated
by our experiments are all available at https://github.com/software-engineering-and-security/java-
deserialization-rce.

3.1.2 Vulnerable-applications analysis Our second study consists in analyzing real-life Java appli-
cations containing deserialization vulnerabilities. Our goal is to study how vulnerabilities in these
applications are patched.

Collecting the CVEs. To collect a suitable set of subject vulnerabilities, we searched specifically
for Java deserialization vulnerabilities in the Mitre CVE database 5, using two queries: {Java,
deserialization}, {Java, deserialisation}. We found that there are 104 CVEs.

Analyzing the CVEs. Unfortunately, we observe that not all the CVEs resulting from our search
are related to deserialization vulnerabilities. Thus, we manually analyze the description of each
CVE to classify them into one of the following three categories:

(1) Deserialization Vulnerability (DV): The kind of CVE we target in this paper, which describes
an application in which there is a Java deserialization vulnerability (e.g., an attacker uses an
entry point such as the readObject method in the application’s code to deserialize his/her
untrusted data and carry out the attack).

(2) GAdget (GA): A CVE that describes a gadget, but not a vulnerability, i.e., there is no entry
point for the attacker to carry out the attack.

(3) Untrusted Code (UC). A CVE that describes a vulnerability in the deserialization mechanism
that can be exploited only if the attacker can execute arbitrary Java code.

https://github.com/software-engineering-and-security/java-deserialization-rce
https://github.com/software-engineering-and-security/java-deserialization-rce

An In-depth Study of Java Deserialization Remote-Code Execution Exploits and Vulnerabilities 11

UC (7.7%)

DV (91.3%)

GA (1%)

Fig. 5. More than 91% of CVEs found via a search with keywords ’Java’ and ’deseriali[sz]ation’ represent real
Java deserialization vulnerabilities.

As represented in Figure 5, we manually classified 95 (91.3%) of these CVEs as DV, 8 (7.7%) as
UC and 1 (∼ 1%) as GA. This means that the results of our search on Mitre with simple keywords
contain noise (about 8%) that we need to remove.

Table 5 in Appendix A shows a partial analysis of 29 CVEs for vulnerable Java applications. The
complete table with the 104 CVEs is available at https://github.com/software-engineering-and-
security/java-deserialization-rce.

3.2 Experimental Evaluation

In this section, we address the following research questions:
• RQ1: How Frequent are Deserialization Vulnerabilities?
• RQ2: How are Gadgets Introduced?
• RQ3: How are Gadget Libraries Patched?
• RQ4: What is the Life-cycle of Gadgets?
• RQ5: How are Vulnerabilities Patched in Real-life Applications?
• RQ6: How easy is the automation of filters against deserialization attacks?

3.2.1 RQ1: How Frequent are Deserialization Vulnerabilities? To understand the evolution of
reported deserialization vulnerabilities, i.e., vulnerabilities in any programming language for which
there is a CVE, as well as the deserialization vulnerabilities specific to Java, we conducted an
empirical study based on the Mitre CVE database.
Deserialization vulnerabilities are widely spread in many languages. To understand the extent

of such vulnerabilities in general, we firstly look for CVEs describing them. A query with the
"deserialization" keyword in the Mitre’s interface returns 361 CVEs. We checked the alternative
"deserialisation" (𝑠 instead of 𝑧) and found four matching CVEs all related to Java vulnerabilities.
Out of these four CVEs, one is already present in the first search. In total, we have identified 361
+ 4 - 1 = 364 deserialization vulnerabilities. The documented deserialization vulnerabilities were
reported between 2004 and 2021. Among these, 15 are linked to the Apache commons-collections
library (query deserialization, apache, commons, collections).
Note that for searching CVEs in different languages, we need to use very specific keywords

separated by space. However, checking the results of our request is relevant to ensure that these
results correspond exactly to what we look for. This is because the "results will include CVE Records
that match all specified keywords" as mentioned in the search tips of the Mitre website6. This means
that the results of a request composed of two words "term1 term2" may contain CVEs concerning
the vulnerabilities related to term1, those which concern term2, and those for both term1 and term2.

5https://cve.mitre.org/
6https://cve.mitre.org/find/search_tips.html

https://github.com/software-engineering-and-security/java-deserialization-rce
https://github.com/software-engineering-and-security/java-deserialization-rce
https://cve.mitre.org/
https://cve.mitre.org/find/search_tips.html

12 Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon

201
0

201
1

201
2

201
3

201
4

201
5

201
6

201
7

201
8

201
9

202
0

202
1

2

5

10

15

20

25

Year

#
of

CV
Es

Java deserializ(s)ation
PHP deserialization
.NET deserialization
XML deserialization

Fig. 6. Frequency of deserialization reported CVEs between 2010 and June 2021 according theMITRE database.

The frequency of deserialization vulnerabilities encompassing Java programming language has a
notable increase from 2015 until now. Indeed, we found that there are 104 CVEs among which 79
(76%) were reported between 2015 and 2020, see Figure 6.

We looked for further languages such as PHP, XML, and .NET and found that Java is the riskiest
language for deserialization attacks among them. Java is one of the most popular and used languages
(millions of developers run Java). This may explain why the percentage of (reported) vulnerabilities
is higher than the other languages [33] [34]. Another point is the spike of vulnerabilities for Java
in 2016. This might be related to Frohoff’s research and his tool ysoserial. The number of detected
vulnerabilities by this tool helps other researchers to use them for detecting new attacks. For
example, CVE-2016-2510 describes a gadget in the BeanShell library for which the ysoserial tool
presented an exploit called BeanShell1 at the beginning of 2016.
About 40 CVEs related to Java deserialization vulnerabilities have been reported between 2018

and 2020. Most of Java deserialization vulnerabilities are critical because they allow arbitrary code
execution on the victim machine. This is probably one of the reasons Java programs and libraries
are under scrutiny and so many vulnerabilities have been reported during the last five years. Note
that a single gadget may have several reported CVEs. This is caused by the fact that a gadget can
be present in many applications and products. Then, a different CVE can be attributed to each
application for the same gadget. Unfortunately, this kind of information is often not present in
the description of CVEs which prevents us from automatically counting unique deserialization
vulnerabilities.

The overall trend shows that the number of CVEs related to deserialization is slightly
increasing in the last 10 years. This means that in the real world, serialization is often
used in applications to process untrusted data.

3.2.2 RQ2: How are Gadgets Introduced? To answer this research question, we analyze the results
of the experimental protocol described in Section 3.1.1. We consider that a gadget can be introduced
in the library(ies) present in the classpath of a victim program and/or in the Java Class Library
(JCL), the set of classes shipped with any JVM.

An In-depth Study of Java Deserialization Remote-Code Execution Exploits and Vulnerabilities 13

Introducing a gadget in an external library. Our objective is to analyze different attacks in order to
show how libraries involved in these attacks include gadgets. Table 2 shows our discoveries about
gadget library versions that were not mentioned in the ysoserial repository. The column Discovered
version describes all the gadget library versions detected through our experiments. The last column
(# of new detected versions) refers to the number of new gadget library versions not including the
mentioned ones in ysoserial. For instance, it is mentioned, in this repository, that version 7.7.14
of vaadin-server library contains gadgets. Our experiments have found that 135 more versions
contain gadgets.

For each library, we identify its first version containing gadgets and the version just before, i.e.,
the version before introducing gadgets. We then look at the log of the execution of the victim
program using these two libraries, one per execution. The log for the non-gadget library version
contains a Java exception which explains the reason for the attack failure. Using this technique, we
have identified four surprisingly innocent-looking ways in which gadgets have been introduced: (1)
adding a class, (2) adding java.io.Serializable to the list of implemented interfaces, (3) adding
a method, and (4) making a class public.
Table 3 shows the studied attacks, the gadget library versions involved in these attacks, their

versions without gadgets, and the actions performed to transform a non-gadget library into a
gadget one. Among the 19 studied ysoserial exploits, there are five (26%) that are relying on more
than one library. These exploits are: CommonsBeanUtils1, Spring1, Spring2, Click1 and Vaadin1.
As shown in Figure 7, there are eight versions (57%) that integrate gadgets by adding a class

(keywordAddClass in the figure), three (21.4%) are affected by introducing the interface java.io.Se-
rializable in the list of their implemented interfaces (keyword MakeSerializable in the figure). In
the remaining cases, the first one introduces gadgets by changing the status of a class from private
to public (7.1%) (keyword ChangeToPublic in the figure) and two library versions introduce gadgets
by adding new methods (14.3%) (keyword AddMethods in the figure). These methods are used for
the construction of malicious payloads.
In the following, we present two concrete exploits, BeanShell1 and CommonsCollections1, and

explain how gadgets have been introduced.

BeanShell1.
The two gadget library versions are beanshell-2.0b4 and beanshell-2.0b5. The version just before

2.0b4 is 2.0b2 and does not contain gadgets. When looking at the content of the log file associated
with the execution of the victim program using version 2.0b2, we observe that there is an error when

Table 2. Discovered versions of gadget libraries using our experiments

Library name Version mentioned in
ysoserial

Discovered versions # of new detected ver-
sions

beanshell 2.0b5 2.0b4 and 2.0b5 1
clojure 1.8.0 1.6.0-beta1 until 1.9.0-alpha15 46
commons-beanutils 1.9.2 1.5 until 1.9.4 14
commons-collections 3.1 and 4.4.0 2.1.1, 3.0, 3.1, 3.2, 3.2.1, 3.2.2, 4.4.0-alpha1 and 4.4.0 6
groovy 2.3.9 2.3.0-beta-2 until 2.4.3 25
rome 1.0 0.5 until 1.0 7
js-rhino 1.7R2 1.6R6, 1.6R7, 1.7R2 until 1.7.7 9
spring-beans 4.1.4.RELEASE 3.0.0.RELEASE until 5.2.9.RELEASE 140
spring-core 4.1.4.RELEASE 4.0.0.RELEASE until 4.2.2.RELEASE 21
spring-aop 4.1.4.RELEASE 1.1-rc1, 1.1-rc2, 1.1, 3.0.0 until 4.2.9 64
click-nodeps 2.3.0 2.1.0-RC1-incubating until 2.3.0 6
javax.servlet 3.1.0 3.0.1 until 4.0.1 19
vaadin-server 7.7.14 7.0.0.beta1 until 7.7.17 135
vaadin-shared 7.7.14 7.4.0.beta1 until 8.11.3 122

14 Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon

Table 3. Actions performed to introduce a gadget in a library

Attack name Gadget-free version First gadgets version Introducing gadgets action

BeanShell1 beanshell-2.0b2 beanshell-2.0b4 Change private class bsh.XThis to public
Clojure clojure-1.6.0-alpha3 clojure-1.6.0-beta1 Add a class AbstractTableModel$ff19274a

CommonsBeanUtils1 commons-beanutils-1.4.1 commons-beanutils-1.5 Add a class BeanComparator that implements
Serializable

commons-collections (2001) commons-
collections2.1.1

Add a class ComparableComparator

CommonsCollections1, 3
and 7

commons-collections3.0 commons-collections3.1 Add implements Serializable to the class LazyMap

CommonsCollections2
and 4

commons-collections3.2.2 commons-collections4-
4.0-alpha1

Add a class TransformingComparator to the library

CommonsCollections5
and 6

commons-collections3.0 commons-collections3.1 Add implements Serializable to the class
TiedMapEntry

Groovy1 groovy-2.3.0-beta1 groovy-2.3.0-beta2 Add a class Opcodes
ROME rome-0.4 rome-0.5 Add a class ObjectBean
MozillaRhino1 and 2 js-rhino-1.6R5 js-rhino-1.6R6 Add a private method accessSlot() in the class

ScriptableObject

Spring1 and 2
spring-beans-2.5.6.SEC01 spring-beans-

3.0.0.RELEASE
Add a class ObjectFactoryDelegatingInvocation-
Handle which implements Serializable

spring-core-3.2.5.RELEASE spring-core-
4.0.0.RELEASE

Add a class SerializableTypeWrapper$MethodInvoke-
TypeProvider

spring-aop-1.0-rc1 spring-aop-1.1-rc1 Add implements Serializable to the class
JdkDynamicAopProxy

Click1 click-nodeps2.0.1-incubating click-nodeps2.1.0 Add implements Serializable to the class
ColumnComparator

javax-servlet vulnerable from its first
release

-

Vaadin1 vaadin-server vulnerable from its first
release

-

vaadin-shared-7.4.0-alpha14 vaadin-shared-7.4.0-
beta1

Add a method Capitalize(String) in the class
SharedUtil

JDK7U21 jdk1.7.0.25 jdk1.6.0.04 –

Add a class (57%)

Make a class serializable (21.4%) Change private class to public (7.1%)

Add methods (14.3%)

Fig. 7. In more than 57% of the 14 studied libraries, gadgets are introduced by adding a class.

serializing the payload BeanShell1. This error is caused by an illegal access to a class bsh.XThis. We
look for this class in the jar file beanshell-2.0b2.jar. We found that this class is defined as private.
Now, looking at this class in the gadget version beanshell-2.0b4, we found that its definition has
changed to public class bsh.XThis. This makes possible the access to this class, allowing the
serialization and thereby the attack.
CommonsCollections1. There are three gadget versions of the library commons-collections: 3.1,
3.2, and 3.2.1 for this attack. For version 3.0, which does not contain gadgets, there is an error while
serializing. After analyzing the difference between the versions commons-collections3.0, which
does not contain gadgets, and commons-collections3.1, which does contain gadgets, we found
that the problem is originating from the class LazyMap. In version 3.0, this class implements only

An In-depth Study of Java Deserialization Remote-Code Execution Exploits and Vulnerabilities 15

1 private void readObject(...) throws
2 IOException, ClassNotFoundException {
3 objectInputStream.defaultReadObject();
4 AnnotationType instance;
5 try {
6 instance = AnnotationType.
7 getInstance(this.type);
8 }
9 catch (IllegalArgumentException ex) {
10 return;
11 }
12 [...]
13 }

(a) readObject() in jdk1.7.0.21.

1 private void readObject(...) throws
2 IOException, ClassNotFoundException {
3 objectInputStream.defaultReadObject();
4 AnnotationType instance;
5 try {
6 instance = AnnotationType.
7 getInstance(this.type);
8 }
9 catch (IllegalArgumentException ex) {
10 throw new InvalidObjectException

11 ("Non-annotation type in annotation

12 serial stream");
13 }
14 [...]
15 }

(b) readObject() in jdk1.7.0.25.

Fig. 8. Two versions of AnnotationInvocationHandler.readObject().

java.util.Map and does not allow the serialization to be performed. In version 3.1, it implements
java.util.Map and java.io.Serializable allowing the serialization to succeed.

Detecting a flaw in the JCL. Deserialization vulnerabilities are not only found in Java code from
third-party Java libraries but also in Java code from the JCL (Java Class Library) shipped with
every JVM. Since this code is always present in all JVMs, we discuss it in more detail here. In our
experiments, and for a studied attack, we vary the JVM versions in order to check if the attack
succeeds or not for a gadget library version. Our goal is to identify the flaw in the Java Runtime
Library (JRL) that allows the execution of such an attack. We then filter the results and distinguish
three types of flaws allowing the insecure deserialization: (1) adding a readObject() method to a
class of the JCL. This class can be used in the code to generate a malicious byte stream (example:
the BadAttributeValueExpException class); (2) change the type of some fields to make them
accessible and easily controlled by the attacker; (3) change the bytecode within a catch block.

Illustration
Consider the method readObject() of the class AnnotationInvocationHandler in the two

JDK-versions jdk1.7.0.21 and jdk1.7.0.25, shown in Figure 8. When analyzing the two code snippets,
it is important to note that the field this.type (used in line 7) might be attacker-controlled. The
first readObject in jdk1.7.0.21 allows the deserialization attack because the catch block fails silently:
it uses the instruction return; (line 10 of Figure 8a) which will exit the readObject and let the
attack continue. The readObject in jdk1.7.0.25 prevents the attack because the catch throws an
InvalidObjectException displaying a message "Non-annotation type in annotation serial stream".
Even though the second version of readObject does not allow the attack, an analysis of the try
block content i.e., the calls inside the getInstance() method, would be necessary to check for the
presence of method calls that may invoke gadgets.

Java deserialization gadgets are not only introduced by adding new classes (8 out of
14 libraries (57%) added classes). As code evolves, methods are updated or added, class
signatures can change (43% of the 14 libraries comprise such changes). Thus, small code
changes which look innocuous can frequently introduce gadgets.

3.2.3 RQ3: How are Gadget Libraries Patched? Table 4 shows the actions performed to fix flaws in
the studied gadget libraries. Note that the different patches present in this table can be either with
the purpose of mitigating a gadget or a coincidental fix due to some changes for other purposes.
In order to classify commits mitigating gadgets, we manually analyzed their messages. The result

16 Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon

is represented in the last column of this table: when the action aims at fixing the gadget against
deserialization, we mention it by "Y"; when it is a coincidental fix we put "N"; when the library
is not patched, we use "-"; and when we do not find information about if the patch is intentional
or coincidental we put the "Unknown" keyword. In this table, the second column represents the
number of gadgets that we extract from each attack. This number ranges from a minimum of 7
gadgets for the CommonsCollections1 attack to a maximum of 19 gadgets for the BeanShell1 attack.
To find the corresponding patch in a library, we study the last version containing gadgets and the
version just after, which is gadget-free. In this table, and as presented in Figure 9, a gadget patch
may consist in:

RemoveSerializable removing the java.io.Serializable from the list of interfaces im-
plemented by the vulnerable class. This action represents 12.5% of cases,

RemoveClass removing the vulnerable class in 18.75% of cases,
IntroduceCheck introducing a safety check to disable insecure serialization. This safety

check can be an instruction in the code of a method or a whole added check method in
18.75% of cases,

ChangeSignature changing the signature of a method in 6.25% of cases, or
RemovePackage removing a package from the gadget library (case of clojure) representing

6.25% of cases.

RemoveSerializable (12.5%)

RemoveClass (18.75%)

IntroduceCheck (18.75%)

ChangeSignature (6.25%)

RemovePackage (6.25%)

NotPatched (37.5%)

Fig. 9. Actions performed to remove gadgets from libraries.

We have noticed that, in the 14 studied libraries, only 8 of them are patched. We have identified 11
patching actions in this table. The remaining 6 libraries over 14 (37.5%) are not patched (NotPatched
keyword in the figure).

A
n
In-depth

Study
ofJava

D
eserialization

R
em

ote-C
ode

Execution
Exploits

and
V
ulnerabilities

17

Attack

To
ta
l#

ga
dg

et
s

Last gadget ver-
sion #

ga
dg

et
s

in
li
b

Gadget-free ver-
sion

Applied patch

In
te
nt
io
na

l
pa

tc
h
(Y
/N

)

BeanShell1 19 beanshell-2.0b5 15 beanshell-2.0b6 Remove the java.io.Serializable
from the list of interfaces implemented
by the class XThis$Handler

Y (see link beanshellcom-
mit)

Clojure 10 clojure1.9.0-
alpha15

5 clojure1.9.0-alpha16 Remove the package "spec" used to load
clojure/spec/alpha__init.class
or clojure/spec/alpha.clj from classpath

N (see part 1.9.0-
alpha16 of the link
clojurechangelog)

CommonsBeanUtils1 17 commons-
beanutils1.9.4

6 not patched not patched -

commons-
collections3.2.2

0 commons-
collections4.4.0-
alpha1

Remove class ComparableComparator N

CommonsCollections1 7 commons-
collections3.2.1

2 commons-
collections3.2.2

Introduce additional constraint to dis-
able insecure serialization

Y (see link
collections3.2.2-release)

CommonsCollections2 13 commons-
collections4-4.0

2 commons-
collections4.4.1

Remove the interface java.io.Serial-
izable from the list of implemented
interfaces of the class InvokerTrans-
former

Y (see link
COLLECTIONS-580)

CommonsCollections3 13 commons-
collections3.2.1

4 commons-
collections3.2.2

Introduce additional constraint to dis-
able insecure serialization

Y (same as CommonsCol-
lections1)

CommonsCollections4 15 commons-
collections4-4.0

4 commons-
collections4.4.1

Remove the interface java.io.Serial-
izable from the list of implemented in-
terfaces of the class InstantiateTran-
sformer

Y (see link collec-
tions580)

CommonsCollections5 8 commons-
collections3.2.1

5 commons-
collections3.2.2

Introduce additional constraint to dis-
able insecure serialization

Y (same as CommonsCol-
lections1)

CommonsCollections6 10 commons-
collections3.2.1

5 commons-
collections3.2.2

Introduce additional constraint to dis-
able insecure serialization

Y (same as CommonsCol-
lections1)

CommonsCollections7 9 commons-
collections3.2.1

4 commons-
collections3.2.2

Introduce additional constraint to dis-
able insecure serialization

Y (same as CommonsCol-
lections1)

Groovy1 10 groovy2.4.3 6 groovy2.4.4 Add a check method called
readResolve() in the class
MethodClosure

Y (see link groovy)

ROME 15 rome1.0 5 not patched not patched -

https://github.com/beanshell/beanshell/commit/1ccc66bb693d4e46a34a904db8eeff07808d2ced#diff-c3ddac5f59b0552b0cb83fca42e0f972dd20b01fefc0ecb6a999042cb43c44e0
https://github.com/beanshell/beanshell/commit/1ccc66bb693d4e46a34a904db8eeff07808d2ced#diff-c3ddac5f59b0552b0cb83fca42e0f972dd20b01fefc0ecb6a999042cb43c44e0
https://clojure.org/releases/devchangelog
https://commons.apache.org/proper/commons-collections/release_3_2_2.html
https://issues.apache.org/jira/browse/COLLECTIONS-580
https://issues.apache.org/jira/browse/COLLECTIONS-580
https://issues.apache.org/jira/browse/COLLECTIONS-580
http://groovy-lang.org/security.html

18
Im

en
Sayar,A

lexandre
B
artel,Eric

B
odden,and

Yves
Le

Traon
MozillaRhino1 16 js-rhino1.7.7.1 9 js-rhino1.7.7.2 Change the signature of the method

getSlot(String, int,int) to
getSlot(Object, int, int) (conse-
quence: not allowing the serialization
of the malicious byte stream)

Unknown

MozillaRhino2 17 js-rhino1.7.7.1 9 js-rhino1.7.7.2 Change the signature of the method
getSlot(String, int,int) to
getSlot(Object, int, int) (conse-
quence: not allowing the serialization
of the malicious byte stream)

Unknown

Spring1 11
spring-beans-
3.0.0.RELEASE

1 not patched not patched -

spring-core–
4.2.2.RELEASE

3 spring-core-
4.2.3.RELEASE

readObject() is instrumented with an
Assert.state() checking instruction

Y (see bug SPR-13656 in
the link spring-io)

spring-aop-1.1-
rc1

0 spring-aop-
4.3.0.RELEASE

Remove the class DecoratingProxy Unknown

Spring2 12
spring-core–
4.2.2.RELEASE

3 spring-core-
4.2.3.RELEASE

readObject() is instrumented with an
Assert.state() checking instruction

Y (see bug SPR-13656 in
the link spring-io)

spring-aop-1.1-
rc1

2 spring-aop-
4.3.0.RELEASE

Remove the class DecoratingProxy Unknown

Click1 17 click-nodeps-
2.3.0-RC1

5 not patched not patched -

javax-servlet-api-
4.0.1

0 not patched not patched -

Vaadin1 10 vaadin-server-
7.7.17

2 vaadin-server-8.0.0 Remove the class PropertysetItem
from the package
com.vaadin.data.util

N

vaadin-shared-
7.4.0.beta1

0 not patched not patched -

JDK7U21 11 jdk-1.7.0.21 11 jdk-1.7.0.25 Add check (try/catch bloc) in the
readObject method

Unknown

Table 4. Different actions to fix a flaw in libraries

https://jira.spring.io/secure/ReleaseNote.jspa?projectId=10000&version=15296
https://jira.spring.io/secure/ReleaseNote.jspa?projectId=10000&version=15296

An In-depth Study of Java Deserialization Remote-Code Execution Exploits and Vulnerabilities 19

Let us now analyze two different actions performed to fix the attacks BeanShell1 - described in
Section 3.2.2 - and CommonsBeanUtils1. The patch of the libraries involved in these two attacks is
described in Table 4.

BeanShell1. This gadget library is patched in the version beanshell-2.0b6 by removing java.io.Se-
rializable from the list of interfaces implemented by the class XThis$Handler. As a result, this
class can no longer be serialized.

CommonsBeanUtils. First, note that this attack uses gadgets in two libraries: commons-beanutils
and commons-collections. We found that the gadget library commons-beanutils was never patched.
For the commons-collections library, the gadget is patched by removing the ComparableCom-
parator class.

Once a class is in a library, removing it might break backward compatibility, thus this
removal is not often an option. Among the studied patches, 18.75% remove a class and
18.75% add a check. Other solutions include adding a safety check to disable the insecure
deserialization, removing the java.io.Serializable interface from the list of imple-
mented interfaces or even removing a whole library package. A significant number of
cases (37.5%) are not patched at all.

3.2.4 RQ4: What is the Life-cycle of Gadgets? To define the life-cycle of a gadget library or a gadget
library version, we extract the following dates:

• when the first library version has appeared, i.e., the jar file appearance date,
• when the gadget was introduced, and
• when the library was patched. We look either at the appearance date of the released version
free from gadgets or at the date of the patch in CVE if it exists.

Figure 10 shows the answers to this RQ according to the different studied attacks. In this figure,
each line represents the life-cycle of a library for which we distinguish between: (1) the versions
before the known gadgets were introduced (uncolored rectangle); (2) the versions that contain
gadgets (dashed rectangle); and (3) the patched versions of the gadget library (black rectangle). First
of all, note that the libraries spring-beans, spring-core, spring-aop, and vaadin-server have several
versions developed in parallel. Each one of these versions is described by a line in the figure.

According to Figure 10, we observe that most of the studied attacks are detected late. In fact,
for some libraries like groovy and js-rhino, the detection of the gadgets takes 7 years. This can
be explained by the fact that the ysoserial tool has been developed in 2016 and the introduced
vulnerabilities use versions of libraries that were developed from the beginning of the 2000s. We
also observe that most of the libraries take between two months and several years to be patched.
The longest time is for the commons-collections and bsh libraries and is equal to eleven years.
The shortest time is two months for the library spring-aop-1. Furthermore, we have classified the
studied (versions of) libraries into three categories:
Cat1 (versions of) libraries for which gadgets were introduced and then patched. This category

contains the groovy, js-rhino, commons-collections, bsh, clojure, and spring-aop-1 libraries.
Cat2 libraries which are never patched, like the commons-beanutils, rome, spring-beans, vaadin-

server-7, vaadin-shared, click-nodeps, and javax-servlet libraries.
Cat3 library versions that contain gadgets from their appearance date. We cite as examples the

vaadin-server-7, spring-aop-3, spring-aop-4, spring-beans-3, spring-beans-4, and spring-
beans-5.

20 Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon

Fig. 10. Life-cycle of some library versions.

Observe that the presentation of the spring-core-4 library is simplified in the Figure 10. Indeed,
this version contains four branches: 4.0.* . . . 4.1.* . . . 4.2.* and 4.3.* which are developed in parallel.
The gadgets were initially patched in one branch and, a few months later, ported to other branches.
Merging all these branches in spring-core-4 would have resulted in a “contains gadget” “patched”
“contains gadget” “patched” pattern which is wrong since it suggest the gadgets are reintroduced.
To simplify the figure, we represent spring-core-4 as being patched when the first branch is patched
and ignore the fact that there is a delay to propagate this patch to other branches.

Note that our study about the patching time of gadgets does not aim to advocate fixing patches
so quickly. Rather than that, our goal is to give an observation about the time that is taken to patch
existing gadgets.

When introducing gadgets in a library, the latter can be patched in few months. However,
for some libraries, the patch is applied after several years going until more than 10 years.

3.2.5 RQ5: How are Vulnerabilities Patched in Real-life Applications? For this study, we use the
95 CVEs describing Java deserialization vulnerabilities we have identified in Section 3.2.1 (see
Figure 5). We manually analyzed their corresponding 77 applications containing the vulnerabilities
to understand what has been changed in these applications to prevent the exploitation of these
vulnerabilities.

We observe that 69 applications (89.6%) have a single CVE, yet that eight applications (10.4%)
have multiple reported CVEs. For example, the Atlassian Bamboo before 5.9.9 and 5.10.x before
5.10.0 application had two CVEs in two years: First CVE-2014-9757, for which the fix consists in
upgrading the Smack library used by the Bamboo application. Unfortunately, this fix does not
prevent the next vulnerability, CVE-2015-8360. The fix for this second CVE is a patch that introduces
both allow and deny lists. Thus, even though a fix exists, it may be not sufficient to protect the
application from future attacks.
Among all the 95 CVEs associated with the 77 studied applications, we successfully analyzed

58 CVEs based on: the CVE description (41 CVEs), the code of the impacted application (6 CVEs), or

An In-depth Study of Java Deserialization Remote-Code Execution Exploits and Vulnerabilities 21

the workaround description (11 CVEs). We were unable to analyze 37 CVEs either because the code
of the applications is not publicly available (neither source nor bytecode, for 36 CVEs) or because
our manual analysis exceeded a time limit (1 CVE). A description of 29 CVEs among the 95 CVEs is
available in Table 5 of Appendix A.

In total, we were able to analyze 58 CVEs from 52 applications. Figure 11 presents the differ-
ent categories of patches and mitigation techniques software vendors have devised. Among the
58 solutions, eleven (19%) disable (de)serialization functionalities (e.g., CVE-2020-11973); eleven
(19%) add an allow list containing the list of allowed classes or packages to use deserialization (e.g.,
CVE-2013-2165); ten (17.2%) add a deny list in which the classes are not allowed to be deserialized
(example of CVE-2018-20732); eight (13.8%) add checks in serializable classes (keyword AddChecks
in the figure) which may go from adding some instructions (e.g., CVE-2016-6793) to activating the
sandbox (e.g., CVE-2018-1000058); seven (12%) upgrade library versions (e.g., CVE-2014-9757); four
(6.9%) protect or restrict access to ports (e.g., CVE-2017-10934); three (5.2%) disable protocols (e.g.,
CVE-2015-4852); three (5.2%) do nothing because the application software reaches the end of life
(e.g., CVE-2016-7065); one (1.7%) changes the software configuration (CVE-2020-9493).

Note that for 13 CVEs there is no patch (i.e., the code is unmodified) but only a workaround
solution. Such methods consist mainly in blocking access to the vulnerable code in order to reduce
the severity of the impact of the attack or to prevent it. They do not modify the vulnerable code
itself but work around this code to prohibit the access for performing the attack. For instance,
the solution to mitigate CVE-2018-15381 consists in blocking or protecting the access to a port.
Obviously, this does not remove the vulnerability in the application in question. In other words, the
application is still exposed to the risk of attacks if, for some reason, the access to the port becomes
allowed again (e.g., new software configuration, software deployed in a new environment).

EndOfLife (5.2%)
ChangeConfig (1.7%)

AllowList (19%)DisableJavaDeser (19%)

DenyList (17.2%)

AddChecks (13.8%) ProtectPorts (6.9%)

UpgradeLibVersion (12%)

DisableProtocol (5.2%)

Fig. 11. Patching/Mitigation actions for the 58 CVEs.

We complete our analysis by the study the nature of commits patching deserialization vulner-
abilities: are these patches manual code modifications or are they automatically generated by a
tool? To have access to commits/patches, the applications must be open-source. Thus, we selected
25 open-source vulnerable applications which use deserialization. Among these 25 applications,
listed in Table 8, we found 17 applications having code patches that were manually generated and
described in commits. The remaining seven applications either update an external dependency (4),
are end-of-life (1) or we were unable to find the patch (2). We observe that no commit is classified
as being generated by a tool. The results of our analysis are described in Table 8 of Appendix C.

22 Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon

Deserialization vulnerabilities may be present on several occasions for the same applica-
tion. Disabling the deserialization in Java applications and building an allow-list are the
most popular kinds of patches for this kind of attacks (19% of cases for each one of these
actions). Such patches may prevent deserialization attacks once and for all. However, for
some applications, the patching/mitigation action consists in upgrading library versions
(12% of cases), which is not safe since the attacker could find another way to carry out
the attack. All patches in the open-source applications we have analyzed were manually
written which may suggest that tools are rarely used to automatically fix this kind of
vulnerability.

3.2.6 RQ6: How easy is the automation of filters against deserialization attacks? Since 2016, Java
supports a filtering mechanism to prevent the exploitation of deserialization vulnerabilities. This
filter, described in JEP 290 [8, 45], can restrict classes to be deserialized to a specific set (allow list)
or prevent a specific set of classes from being deserialized (deny list).
To use these filters, we have to extract classes used by Java applications to either: (1) create a

deny list containing at least one class from each deserialization attack (in order to prevent each
attack) and make sure that the deny list will not break any Java application or (2) create an allow
list containing all classes used by the Java application during deserialization and make sure that it
prevents all the attacks. To be able to create these allow and deny lists, we first extract the set of
classes required by the 19 ysoserial deserialization attacks. These classes are listed in Table 6. We
then manually extract the set of classes used during deserialization from 10 real-world vulnerable
applications which use deserialization. This set is listed in Table 7.
Unfortunately, we observe that all the Java applications make use of generic types such as

ArrayList<Object> or Serializable. This is problematic since the allow list should then contain
all possible serializable classes and the deny list should then be empty which makes the filters
useless. This shows that an analysis of the code deserializing data is not precise enough to generate
a useful set of classes that can be used in filters. There are two solutions that can be explored as
future work. The first is to rely on the in-depth knowledge of the applications by the developers
themselves. However, in practice, it might be difficult for the following reasons: contacting the
developer responsible for the code might not be possible because the person might have left the
project; the developer might not remember precisely how the code works, etc. The second is to
automate the analysis of the applications to automatically extract the set of classes used by the
application. While at a first sight this approach seems to work, it will face the challenges of static
analysis such as reflection, code loading, and other language-specific features difficult to analyse
automatically.

Furthermore, as the code of applications evolves, the allow/deny lists must be kept synchronized
with the new versions. This would require that developers spend time debugging and updating
these lists instead of working on the application’s code directly.

In the lab, deserialization attacks can be trivially blocked when activating the filter.
However, in practice setting up and maintaining these filters suppose that developers
know in advance the types to deserialize in the application which, often, is not trivial
because of technical limitations, time constraints, or project management challenges.

4 Synthesis and Take-away Messages

Our work has yielded the following important conclusions: (1) the persistent deserialization of
untrusted data; (2) what is the effect of disabling the java.io.Serializable in the patches; (3)

An In-depth Study of Java Deserialization Remote-Code Execution Exploits and Vulnerabilities 23

what are the factors impacting the duration of finding a patch; (4) how precise is the definition of
deserialization vulnerabilities in CVEs description; and (5) what are the take-away messages from
our analysis results.

4.1 Persistent deserialization of untrusted data

The deserialization of untrusted data is not recommended by the OWASP: "the only safe archi-
tectural pattern is not to accept serialized objects from untrusted sources or to use serialization
mediums that only permit primitive data types." [50] [59]. The same advice is provided by the Secure
Coding Guidelines for Java SE which states, at the beginning of its 8th section, that "Deserialization
of untrusted data is inherently dangerous and should be avoided" [47]. However, our analysis
of Java applications shows that, until now, developers are still using deserialization of data from
untrusted sources. This could be explained by developers not being aware of the recommendations,
a lack of proper security vetting mechanisms during software development, or constraints imposing
the use of insecure legacy code.

4.2 Disable Serializable

When analyzing the gadget patches (see Table 4), we find that disabling the deserialization,
by removing the java.io.Serializable interface from the list of implemented interfaces in the
application’s class(es), prevents exploitation in every single case. Removing this interface is very
effective to protect against the known deserialization attacks since it breaks the chain of gadgets
in the victim application at hand. The other solutions, such as changing the library versions in
dependencies, or blocking the access to some ports, can significantly reduce the risk of exploitation
but do not remove the weakness.

4.3 Library use frequency vs. duration of finding patches

A large fraction of libraries,like the click-nodeps and the javax-servlet, or applications is never
patched. Some libraries, like the commons-collections3, have been deprecated and replaced by
other releases (collections4 in the case of commons-collections). In the other cases, the patch takes
many years to be carried out. This points to an important question: Is there a link between the
frequency of using a library in real-world applications and the duration to fix its gadgets? In other
words, if a library containing gadgets is used in many applications, do developers find the gadgets
and fix them more quickly than for other unsafe libraries that are only infrequently used? We have
found a first element to answer this question: the frequency of using a library in applications is not
the main factor impacting the duration of finding a patch. For example, commons-collections is
used in many real-world applications, yet it was unsafe between 2004 and 2015 and only then, after
11 years, the patch was introduced to fix its gadgets in both deprecated version 3.2.2 and its release
4.4.1.

4.4 Definition of deserialization vulnerabilities in CVEs

The definition of deserialization vulnerabilities in CVEs is not precise. In fact, we have found
that some declared deserialization vulnerabilities CVEs are in reality not vulnerabilities but rather
descriptions of gadgets (there is no entry point for the attacker to carry out the attack) or descriptions
of untrusted code (vulnerability in the deserialization mechanism which can be exploited only if
the attacker can execute arbitrary Java code).

24 Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon

4.5 Gadgets inspection

A usable take-away from our analysis results is the list of recommendations library developers
should follow to prevent the introduction of gadgets. These recommendations are inferred from
Table 3. When a developer introduces a new class that can be serialized or modifies an existing one
(see Table 3 for real-world examples), we suggest the following recommendations:

• List all the new field types and sub-types which are introduced or modified.
• For each type, check that there is no code reachable from the readObject method which
enables either to (1) jump to a known gadget or (2) execute code based on the untrusted
data (e.g., a reflective method call with the method description extracted from the untrusted
input).

5 Limitations

5.1 Scope of our study

Our work is based on vulnerabilities described by the ysoserial tool. In fact, the generation of the
serialized files was conducted by the commands described in its repository. This tool is developed
and widely adopted by security researchers due to its ease of use for creating proof of concept
payloads. It gathers a wide range of exploits that concern many well-known libraries such as the
commons-collections library. We are not aware of any other tools with features comparable to
ysoserial. Yet, the scope of our study is limited to the gadgets described in ysoserial, and as result,
we cannot affirm the complete list of gadget libraries. Furthermore, the list of actions performed to
introduce gadgets in the libraries in Table 3 is not exhaustive. These actions are extracted from the
19 exploits described in ysoserial.

5.2 Source code accessibility

When performing our analysis of the vulnerabilities in Java applications, we encountered some
difficulties in finding and obtaining access to the source code of some applications. Once found, the
code is sometimes hard to analyze, and finding the patch takes a lot of time. Another limitation
regards the inaccessibility of some existing patches for 4 CVEs among our studied 95 ones (4.1%).
Indeed, some applications such as IBM Maximo Asset Management (CVE-2020-4521) present links
to patches that are not accessible: an error message is displayed when trying to obtain access to the
patch. It is not trivial to extract this patch information in these cases and a reverse engineering step
is needed to get such information. For time-related reasons, we could not do this step. Obviously, this
harms our study since we cannot identify supplementary patching actions that may be unknown
beforehand.

5.3 CVEs keyword-based search precision

The study on the frequency of deserialization vulnerabilities yields an under-approximation
of the real-world situation. Indeed, some CVE might not have the keyword deseriali[sz]ation we
use for the search and thus might not be present in the list of CVEs returned from the search.
This is the case for instance for CVE-2021-26858 7 a .NET deserialization vulnerability used by the
HAFNIUM group to run code as SYSTEM on Microsoft Exchange servers [41]: the description of
this vulnerability on Mitre’s website does not mention that it is a deserialization vulnerability. Such
CVE descriptions were incomplete at the time of writing but might be updated to be more precise.

7https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-26857

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-26857

An In-depth Study of Java Deserialization Remote-Code Execution Exploits and Vulnerabilities 25

6 Related work

6.1 Deserialization vulnerabilities

Preventing deserialization attacks starts right at the serialization step. As explained in [37],
at this stage it is important to follow recommendations and best practices for the secure use
and implementation of Java serialization. Some tips are given to make the code more secure
such as (1) guard sensitive data fields; (2) check all security permissions for serialization and
deserialization carefully and (3) use serialization filtering for untrusted data. The detection of
this kind of vulnerability may be attempted early in the software development process. In this
context, Koutroumpouchos et al. [35] have developed a dynamic tool called ObjectMap allowing
the detection of deserialization and object injection vulnerabilities in Java and PHP-based web
servers. Their tool accepts as inputs a URL of such a web server and generates HTTP requests
containing payloads of known attacks. Executing these requests enables to detect if the web server
is vulnerable to known attacks. If one of the payloads is executed it means that a vulnerability has
been executed and that the web server needs to be patched.
Frohoff et al. [21] have implemented the ysoserial tool which provides 34 publicly available

Java deserialization payloads. These payloads represent gadget chains discovered in common
Java libraries that can, under the right conditions, exploit Java applications performing unsafe
deserialization of objects. When used, these payloads lead to attacks that are critical since they
allow, in most cases, the execution of arbitrary code. And even when attacks are unable to execute
arbitrary code, they may still be able to upload and delete files on the target host or send network
traffic such as DNS requests. Arbitrary-code execution is the most common and most severe form
of an attack since it is the first step allowing the attacker to compromise the whole machine.

In the same context, Haken has presented his tool Gadget Inspector [25] to inspect Java libraries
and classpaths for gadget chains. This tool allows to automatically detect possible gadgets chains
in an application’s classpath. Given war or jar file(s) of a library as input, this tool will go through
several stages of classpath inspection to build up a list of blocks of gadget chains. These blocks
may exist in the full gadget chains discovered by ysoserial. Exploring the serialized byte streams
to deserialize is relevant and may help to detect and locate some gadgets’ information. In this
context, Bloor has developed a tool named SerializationDumper [6] which aims at automating the
task of decoding raw serialization streams and allows, then, to rebuild Java serialization streams
and Java RMI packet contents in a more human-readable format. Unfortunately, this tool has some
limitations like its inability to deserialize all Java serialized data streams and its "rebuild" mode
which only operates on the Hex-Ascii encoded bytes from the dumped data. The same developer
has provided another tool called DeserLab [5], a Java client and server application that implements
a custom network protocol using the Java serialization format to demonstrate Java deserialization
vulnerabilities.

Rasheed et al. [55] propose a hybrid approach that extends a static analysis with fuzzing to detect
serialization vulnerabilities. They use a heap abstraction to direct fuzzing for vulnerabilities in
Java libraries. Fingann [20] presents an overview of Java deserialization vulnerabilities, different
techniques an attacker can use to exploit these vulnerabilities as well as which mitigation strategies
can be employed to minimize the attack surface. This thesis encompasses the description of
the most known works in the state of the art around deserializations vulnerabilities in Java:
the Waratek description of deserialization problem [69], the tools like ysoserial [21] and Gadget
Inspector [25], the deserialization gadgets and chains of gadgets [15], and the code practices to
prevent deserialization attacks [32, 57].
Combating the deserialization attacks is one of the ideas explored by Seacord who examines

in [58] Java deserialization vulnerabilities and evaluates various look-ahead object input streams

26 Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon

solutions. Cristalli et al. [14] propose a sandboxing approach for protecting Java applications based
on a trusted execution path used for defining the deserialization behavior. They test their defensive
mechanism on two Java frameworks, JBoss and Jenkins. They design a sandbox system that is able
to intercept native methods by modifying the JVM internals. Their sandboxing system performs
two high-level phases: (1) dynamically analyzing Java applications and extracting the precise
execution path in terms of stack traces, and (2) use of a sandbox policy for monitoring applications
at runtime and blocking incoming attacks: "when a native method is invoked by the application, the
system intercepts it and checks whether the entire stack trace executed has been already observed in
the learning phase. For this check, the system maintains a memory structure in the form of a hash
table" [14].

Deserialization vulnerabilities are not limited to the Java language. Shahriar et al. [61] propose
an approach to discover Object Injection Vulnerability (OIV) in PHP web applications. This kind
of vulnerabilities involves accepting external inputs during deserialization operation. They use
the concept of Latent Semantic Indexing (LSI [39]) to identify OIVs. Their approach was evaluated
using three open-source PHP applications and was able to find the known OIV and to discover
new vulnerabilities.
Dietrich et al. [19] study serialization-related vulnerabilities for Java that exploit the topology

of object graphs constructed from classes of the standard library. The deserialization, in this case,
leads to resource exhaustion and denial of service attacks. They analyze three vulnerabilities that
can be exploited to exhaust stack memory, heap memory, and CPU time. They identify the language
and library design features that enable these vulnerabilities. They demonstrate that these Java
vulnerabilities may concern also C#, JavaScript, and Ruby.

Peles et al. [53] present high severity vulnerabilities in Android. One of these vulnerabilities
concerns the Android Platform and Google Play Services and allows arbitrary code execution. They
perform a large-scale experiment over 32 701 Android applications and find new deserialization
vulnerabilities unknown before. They demonstrate the impact of the detected vulnerabilities by
developing a proof of concept exploit running under Google Nexus 5 Hammerhead running Android
5.1.1.
Alexopoulos et al. [1] presented a detailed analysis of the large body of open-source software

packaged in the popular Debian GNU/Linux distribution. Vasquez et al. [68] provided a study of
Android-related vulnerabilities focusing on the ones affecting the Android OS. They have studied
and classified 660 vulnerabilities. They have classified the deserialization of untrusted data in a
category called "Indicator of poor quality code". The same goal was tackled by Mazuera et al. [40]
who presented a large study aiming at analyzing software vulnerabilities in the Android OS. They
analyzed 1235 vulnerabilities from different perspectives: vulnerability types and their evolution,
CVSS vectors that describe the vulnerabilities, impacted Android OS layers, and their survivability
across the Android OS history.
Other approaches against deserialization attacks suggest to use alternative data formats like

textual ones (XML and JSON for example). The deserialization process using these formats does
not invoke calls to gadgets, but, Fingann and Muñoz et al.[20, 42] show that attackers may be able
to perform their attacks regardless of the malicious data format. XMLEncoder/XMLDecoder [49]
is one of the existing mechanisms for using alternative data formats like textual ones. While the
XMLEncoder class is assigned to write output files for textual representation of Serializable objects,
the XMLDecoder class reads an XML document that was created with XMLEncoder [27]. The use
of these alternative serialization mechanisms is not necessarily an effective solution to prevent
deserialization attacks. In fact, Fingann [20] states that if an application uses XMLDecoder to
deserialize a user byte stream, then the user may find another way to inject arbitrary code into the

An In-depth Study of Java Deserialization Remote-Code Execution Exploits and Vulnerabilities 27

methods to call when deserializing the byte stream. This means that any application that uses user
input data to deserialize by XMLDecoder can be a victim of deserialization attacks.
Kyro [64] is an alternative Java implementation for serialization. Similarly to the native Java

implementation [56], it can lead to arbitrary code execution [16].
ProtocolBuffers [23] is a generic approach to serialize any structured data. It is available in many

programming languages such as Java, Python, or C++. Applications leveraging this serialization pro-
tocolmight become vulnerable if theymanipulate sensitive types such as java.lang.reflect.Method.
On top of that, the ProtocolBuffers’ Java implementation itself was vulnerable to a denial of service
attack [17].
Java deserialization filtering is the technique supported by Oracle [48]. Filters can validate in-

coming classes before they are deserialized by screening the incoming streams of serialized objects.
For each new object in the stream that will be deserialized, the filters are invoked. Support for
serialization filters is included in Java 6 update 141, Java 7 update 131, Java 8 update 121, and all
versions after Java 9. Again, this technique requires the developer to manually extract serializable
classes and add patterns to configure and activate the filter.

6.2 Java Security
Balzarotti et al. [2] present an approach that combines static and dynamic analysis techniques

to identify faulty sanitization procedures that can be bypassed by an attacker through sensitive
sinks in applications. The authors validate their approach by implementing the Saner tool aiming
at analyzing the use of custom sanitization routines to identify possible XSS and SQL injection
vulnerabilities in web applications. They applied it to five real-world applications in which they
identify 13 vulnerabilities: for each sink, there exists at least one program path such that the output
of a sanitization routine flows into this sink. A systematic in-depth study of 87 publicly available
Java exploits was performed in [29]. These attacks lead to security vulnerabilities that involve
issues such as type confusion, deserialization issues, trusted method chaining, or confused deputies.
Holzinger et al. [29] show that all attack vectors implemented by the exploits belong to one of
three categories: single-step attacks, restricted-class attacks, and information hiding attacks. They
studied in detail the structures offered by the Java language such as the Security Manager feature
and show how the analysis of the exploits samples helps for the detection of vulnerabilities.
Safe development of applications in Java relies a lot on the robustness of the JVM on which

the code will be compiled and executed. Yuting et al. [9] dealt with the problem of validating the
production of JVMs. The classfuzz fuzzer allows the generation of illegal bytecode files that aim
to test a JVM and detect bugs in its bytecode verifiers. They developed their approach named
classming in the same context of validating JVMs. Their method is based on a technique called live
bytecode mutation able to generate mutant bytecode files from a seed bytecode file to test JVMs.
They tested their approach on several JVM implementations and reported the detected JVM crashes.
One of their discoveries touches on a highly critical security vulnerability in Java 9 that allowed
untrusted code to disable the Security Manager and elevate its privileges. Confuzzion [7] is another
JVM fuzzer which is more generic in the sense that it allows the generation of programs that are
not possible to generate with Classming or Classfuzz. Dean et al. [18] demonstrated that there is a
significant number of flaws in the Java language and in these two browsers supporting it. They
evoked the compromise that exists between the openness desired by Web application writers and
the security needs of their users. Their study aimed at finding the source of the identified flaws.
They showed that the difference between the Java language and the bytecode semantics is one of
the main reasons for weaknesses affecting the applications. A deeper study of the bytecode and
bugs concluded that the Java system needs to be reviewed: the bytecode format and the runtime
system should be redesigned in order to build a more secure system.

28 Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon

Holzinger et al. [28] conducted a tool-assisted adaptation of the Java Class Library (JCL) able to
significantly harden the JCL against attacks. They study the problem of using shortcuts, originally
introduced for ease of use and to improve performance, that cause Java to elevate the privileges of
code implicitly. These shortcuts are responsible for a group of vulnerabilities known to have been
exploited for the Java runtime: they directly enable attack vectors and complicate the security-
preserving maintenance and evolution of the codebase by elevating privileges to certain callers
implicitly. Their approach consists of three steps: (1) locate all shortcuts; (2) remove the shortcuts
found and (3) wrap the calls in the JCL to those methods that formerly implemented shortcuts into
privileged actions. Bartel et al. [3] presented an approach based on a runtime solution calledMUSTI.
This tool detects and prevents invalid object initialization attacks. To achieve this goal, the authors
patch the JVM by instrumenting the generated bytecode with an added code. This code checks if the
objects have been correctly initialized. Their approach is generic and can be implemented in many
languages supporting a similar sandbox system as the JVM. Any native code in Java programs may
bypass the memory protection and the higher-level policies. To deal with these problems, Chisnall
et al. [10] developed a hardware-assisted implementation of the Java Native Interface (JNI), called
CHERI JNI. This tool extends the guarantees required for Java’s security model to native code.
Their approach ensures safe direct access to buffers owned by the JVM.

7 Conclusion

The Java language is one of the most used languages to develop applications. Thanks to its ease
of use and its portability, millions of applications run using this language. However, every year,
many vulnerabilities in the Java runtime and its runtime libraries are discovered, reported, and
patched. Our work highlights that vulnerabilities such as Java deserialization vulnerabilities can be
critical since they impact the security of the applications, and in most cases allow the execution of
arbitrary code. In this paper, we have performed 256 515 experiments on 19 RCE deserialization
attacks. We have identified that not only the mentioned library versions in ysoserial attacks contain
gadgets, but that there are previous and later versions that contain these gadgets as well. As an
example, it is mentioned in this repository that the version 1.9.2 of the commons-beanutils library
includes gadgets. After running our experiments, we found that 14 more versions contain also
the same gadgets. These versions belong to the range between 1.5 and 1.9.4. We have studied
how gadgets are introduced in libraries and observe that the modification of one innocent-looking
detail in a class - such as making it public - can already introduce a gadget. Defense mechanisms
such as filtering and allow/deny listing might be effective in preventing such attacks but might
be hard to set up and maintain. We have performed an analysis of 104 CVEs - associated with
vulnerable Java applications - from the Mitre database. We discovered that the results of our search
on Mitre contain noise that we need to remove: among these 104 CVEs, only 95 CVEs represent
"real" deserialization vulnerabilities description. The remaining 9 CVEs represent other types that
we classified into GA (gadgets description) and UC (untrusted code description). We find that some
patches of these application-level vulnerabilities consist in upgrading library dependencies although
these are frequently insufficient to prevent the deserialization attacks. Among the 95 studied CVEs,
we were able to analyze 58 CVEs in which 19% are correctly fixed by disabling the deserialization
of untrusted data.
A perspective for future work is the development of an algorithm for automatically detecting

deserialization gadgets chains in applications, evaluate this implementation on a set of applications
and compare it with other existing tools such as Gadget Inspector [25]. Our goal is to prevent
deserialization attacks early. Identifying the parameters involved to define the duration of patching
libraries is another perspective of this work. In this paper, we have focused only on RCE attacks
since we have designed a framework to test only this kind of attacks. Now, we are planning an

An In-depth Study of Java Deserialization Remote-Code Execution Exploits and Vulnerabilities 29

extension of this framework to cover the remaning 15 non-RCE ysoserial attacks containing DOS
ones which aim at making services unavailable to their legitimate users.

Acknowledgments

This work was supported by the Luxembourg National Research Fund (FNR) ONNIVA Project,
ref. 12696663. This work was partially supported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

References

[1] Alexopoulos, N., Habib, S.M., Schulz, S., Mühlhäuser, M.: The Tip of the Iceberg: On the Merits of Finding Security
Bugs. ACM Trans. Priv. Secur. 24(1), 3:1–3:33 (2020)

[2] Balzarotti, D., Cova, M., Felmetsger, V., Jovanovic, N., Kirda, E., Kruegel, C., Vigna, G.: Saner: Composing Static and
Dynamic Analysis to Validate Sanitization in Web Applications. In: 2008 IEEE Symposium on Security and Privacy
(S&P). pp. 387–401. IEEE Computer Society (2008)

[3] Bartel, A., Klein, J., Traon, Y.L.: Musti: Dynamic Prevention of Invalid Object Initialization Attacks. IEEE Trans. Inf.
Forensics Secur. 14(8), 2167–2178 (2019)

[4] Blazquez, D.: Insecure deserialization: Attack examples, mitigation and prevention (2020), retrieved 2022 from https:
//hdivsecurity.com/bornsecure/insecure-deserialization-attack-examples-mitigation/

[5] Bloor, N.: Deserlab, retrieved 2022 from https://github.com/NickstaDB/DeserLab
[6] Bloor, N.: Serializationdumper, retrieved 2022 from https://github.com/NickstaDB/SerializationDumper#%

23serializationdumper
[7] Bonnaventure, W., Khanfir, A., Bartel, A., Papadakis, M., Le Traon, Y.: Confuzzion : A java virtual machine fuzzer for

type confusion vulnerabilities. In: 2021 IEEE international conference on software quality, reliability and security
companion (QRS). IEEE (2021)

[8] Broujerdi, H.: Jdk approach to address deserialization vulnerability (2018), retrieved 2022 from https://www.redhat.com/
en/blog/jdk-approach-address-deserialization

[9] Chen, Y., Su, T., Su, Z.: Deep differential testing of JVM implementations. In: Atlee, J.M., Bultan, T., Whittle, J. (eds.)
Proceedings of the 41st International Conference on Software Engineering, ICSE. pp. 1257–1268. IEEE / ACM (2019)

[10] Chisnall, D., Davis, B., Gudka, K., Brazdil, D., Joannou, A., Woodruff, J., Markettos, A.T., Maste, J.E., Norton, R., Son,
S., et al.: Cheri jni: Sinking the java security model into the c. ACM SIGARCH Computer Architecture News 45(1),
569–583 (2017)

[11] Company, I.: Ibm download, retrieved 2022 from https://www.ibm.com/support/pages/java-sdk-downloads
[12] Corporation, T.M.: (2020), retrieved 2022 from https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=deserialization
[13] Corporation, T.M.: Terminology - a glossary of terms used by the cve program (2020), retrieved 2022 from https:

//cve.mitre.org/about/terminology.html#vulnerability
[14] Cristalli, S., Vignati, E., Bruschi, D., Lanzi, A.: Trusted Execution Path for Protecting Java Applications Against

Deserialization of Untrusted Data. In: Research in Attacks, Intrusions, and Defenses - 21st International Symposium,
RAID. Lecture Notes in Computer Science, vol. 11050, pp. 445–464. Springer (2018)

[15] Daconta, M.C.: When runtime.exec() won’t, retrieved 2022 from https://www.infoworld.com/article/2071275/when-
runtime-exec---won-t.html

[16] Database, N.N.V.: Vulnerability summary for cve-2020-5413, retrieved 2022 from https://nvd.nist.gov/vuln/detail/CVE-
2020-5413

[17] Database, N.N.V.: Vulnerability summary for cve-2021-22569, retrieved 2022 from https://nvd.nist.gov/vuln/detail/CVE-
2021-22569

[18] Dean, D., Felten, E.W., Wallach, D.S.: Java security: From hotjava to netscape and beyond. In: 1996 IEEE Symposium on
Security and Privacy. pp. 190–200. IEEE Computer Society (1996)

[19] Dietrich, J., Jezek, K., Rasheed, S., Tahir, A., Potanin, A.: Evil Pickles: DoS Attacks Based on Object-Graph Engineering.
In: 31st European Conference on Object-Oriented Programming (ECOOP 2017). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 74, pp. 10:1–10:32 (2017)

[20] Fingann, S.: Java deserialization vulnerabilities exploitation techniques and mitigations, retrieved 2022 from
https://www.duo.uio.no/bitstream/handle/10852/79730/1/Master-Thesis---Java-Deserialization-Vulnerabilities---
Sondre-Fingann.pdf

[21] Frohoff, C., Kaiser, M.: ysoserial, retrieved 2022 from https://github.com/frohoff/ysoserial
[22] GitBook: Introducing snyk (2022), retrieved 2022 from https://docs.snyk.io/introducing-snyk
[23] Google: Protocol buffers, retrieved 2022 from https://developers.google.com/protocol-buffers

https://hdivsecurity.com/bornsecure/insecure-deserialization-attack-examples-mitigation/
https://hdivsecurity.com/bornsecure/insecure-deserialization-attack-examples-mitigation/
https://github.com/NickstaDB/DeserLab
https://github.com/NickstaDB/SerializationDumper#%23serializationdumper
https://github.com/NickstaDB/SerializationDumper#%23serializationdumper
https://www.redhat.com/en/blog/jdk-approach-address-deserialization
https://www.redhat.com/en/blog/jdk-approach-address-deserialization
https://www.ibm.com/support/pages/java-sdk-downloads
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=deserialization
https://cve.mitre.org/about/terminology.html#vulnerability
https://cve.mitre.org/about/terminology.html#vulnerability
https://www.infoworld.com/article/2071275/when-runtime-exec---won-t.html
https://www.infoworld.com/article/2071275/when-runtime-exec---won-t.html
https://nvd.nist.gov/vuln/detail/CVE-2020-5413
https://nvd.nist.gov/vuln/detail/CVE-2020-5413
https://nvd.nist.gov/vuln/detail/CVE-2021-22569
https://nvd.nist.gov/vuln/detail/CVE-2021-22569
https://www.duo.uio.no/bitstream/handle/10852/79730/1/Master-Thesis---Java-Deserialization-Vulnerabilities---Sondre-Fingann.pdf
https://www.duo.uio.no/bitstream/handle/10852/79730/1/Master-Thesis---Java-Deserialization-Vulnerabilities---Sondre-Fingann.pdf
https://github.com/frohoff/ysoserial
https://docs.snyk.io/introducing-snyk
https://developers.google.com/protocol-buffers

30 Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon

[24] Guardian, T.: San francisco municipal transport agency attacked by hackers who locked up computers and data with
100 bitcoin demand (2016), retrieved 2022 from https://www.theguardian.com/technology/2016/nov/28/passengers-
free-ride-san-francisco-muni-ransomeware

[25] Haken, I.: Gadget inspector, retrieved 2022 from https://github.com/JackOfMostTrades/gadgetinspector
[26] Haller, I., van der Kouwe, E., Giuffrida, C., Bos, H.: METAlloc: efficient and comprehensive metadata management for

software security hardening. In: Polychronakis, M., Giuffrida, C. (eds.) Proceedings of the 9th European Workshop on
System Security, EUROSEC. pp. 5:1–5:6. ACM (2016)

[27] Hat, R.: Java deserialization flaws: Part 2, xml deserialization (2014), retrieved 2022 from https://www.redhat.com/en/
blog/java-deserialization-flaws-part-2-xml-deserialization

[28] Holzinger, P., Hermann, B., Lerch, J., Bodden, E., Mezini, M.: Hardening java’s access control by abolishing implicit
privilege elevation. In: 2017 IEEE Symposium on Security and Privacy (SP). pp. 1027–1040. IEEE (2017)

[29] Holzinger, P., Triller, S., Bartel, A., Bodden, E.: An In-Depth Study of More Than Ten Years of Java Exploitation. In:
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. pp. 779–790. ACM
(2016)

[30] of Homeland Security (DHS), U.D., Cybersecurity, (CISA), I.S.A., Corporation, T.M.: Glossary, retrieved 2022 from
https://www.cve.org/ResourcesSupport/Glossary#

[31] of Homeland Security (DHS), U.D., Cybersecurity, (CISA), I.S.A., Corporation, T.M.: Terminology, retrieved 2022 from
https://cve.mitre.org/about/terminology.html#cve_id

[32] engineering Institute, S.: Prevent deserialization of untrusted data, retrieved 2022 from https://wiki.sei.cmu.edu/
confluence/display/java/SER12-J.+Prevent+deserialization+of+untrusted+data

[33] Java: S’informer sur la technologie java, retrieved 2022 from https://www.java.com/fr/about/
[34] Java, G.: Retrieved 2022 from https://go.java/
[35] Koutroumpouchos, N., Lavdanis, G., Veroni, E., Ntantogian, C., Xenakis, C.: Objectmap: detecting insecure object

deserialization. In: Proceedings of the 23rd Pan-Hellenic Conference on Informatics, PCI. pp. 67–72. ACM (2019)
[36] Kuznetsov, V., Szekeres, L., Payer, M., Candea, G., Sekar, R., Song, D.: Code-Pointer Integrity. In: Flinn, J., Levy, H.

(eds.) 11th USENIX Symposium on Operating Systems Design and Implementation, OSDI ’14. pp. 147–163. USENIX
Association (2014)

[37] Lawrence, A.: Best practices for java security, retrieved 2022 from https://bitbucket.org/blog/best-practices-for-java-
security

[38] Lawrence, G., Frohoff, C.: Owasp appseccali 2015 - marshalling pickles (2015), retrieved 2022 from https://
www.slideshare.net/frohoff1/appseccali-2015-marshalling-pickles

[39] Manning, C.D., Raghavan, P., Schütze, H.: Introduction to information retrieval. Cambridge University Press (2008).
https://doi.org/10.1017/CBO9780511809071, retrieved 2022 from https://nlp.stanford.edu/IR-book/pdf/irbookprint.pdf

[40] Mazuera-Rozo, A., Bautista-Mora, J., Linares-Vásquez, M., Rueda, S., Bavota, G.: The android OS stack and its vulnera-
bilities: an empirical study. Empir. Softw. Eng. 24(4), 2056–2101 (2019)

[41] (MSTIC), M.T.I.C., Team, M..D.T.I., Security, M..: Hafnium targeting exchange servers with 0-day exploits (2021),
retrieved 2022 from https://www.microsoft.com/security/blog/2021/03/02/hafnium-targeting-exchange-servers/

[42] Muñoz, A., Mirosh, O.: Friday the 13th json attacks (2017), retrieved 2022 from https://www.blackhat.com/docs/us-
17/thursday/us-17-Munoz-Friday-The-13th-JSON-Attacks-wp.pdf

[43] Ng, A.: How the equifax hack happened, and what still needs to be done - a year after the revelation of the massive
breach, there’s unfinished business (2018), retrieved 2022 from https://www.cnet.com/news/privacy/equifaxs-hack-
one-year-later-a-look-back-at-how-it-happened-and-whats-changed/

[44] OpenJ9: Openj9 download, retrieved 2022 from https://adoptopenjdk.net/releases.html?variant=
openjdk8&jvmVariant=openj9

[45] OpenJDK: Jep 290: Filter incoming serialization data, retrieved 2022 from https://openjdk.java.net/jeps/290
[46] Oracle: Oracle se downloads, retrieved 2022 from https://www.oracle.com/java/technologies/javase-downloads.html
[47] Oracle: Secure coding guidelines for java se, retrieved 2022 from https://www.oracle.com/java/technologies/javase/

seccodeguide.html
[48] Oracle: Core libraries - serialization filtering (2018), retrieved 2022 from https://docs.oracle.com/en/java/javase/11/

core/serialization-filtering1.html#GUID-8296D8E8-2B93-4B9A-856E-0A65AF9B8C66
[49] Oracle: Long term persistence (2021), retrieved 2022 from https://docs.oracle.com/javase/tutorial/javabeans/advanced/

longpersistence.html
[50] OWASP: A8:2017-insecure deserialization, retrieved 2022 from https://owasp.org/www-project-top-ten/2017/A8_2017-

Insecure_Deserialization
[51] OWASP: Buffer overflow (2021), retrieved 2022 from https://owasp.org/www-community/vulnerabilities/

Buffer_Overflow
[52] OWASP: Owasp top 10:2021 (2021), retrieved 2022 from https://owasp.org/Top10/

https://www.theguardian.com/technology/2016/nov/28/passengers-free-ride-san-francisco-muni-ransomeware
https://www.theguardian.com/technology/2016/nov/28/passengers-free-ride-san-francisco-muni-ransomeware
https://github.com/JackOfMostTrades/gadgetinspector
https://www.redhat.com/en/blog/java-deserialization-flaws-part-2-xml-deserialization
https://www.redhat.com/en/blog/java-deserialization-flaws-part-2-xml-deserialization
https://www.cve.org/ResourcesSupport/Glossary#
https://cve.mitre.org/about/terminology.html#cve_id
https://wiki.sei.cmu.edu/confluence/display/java/SER12-J.+Prevent+deserialization+of+untrusted+data
https://wiki.sei.cmu.edu/confluence/display/java/SER12-J.+Prevent+deserialization+of+untrusted+data
https://www.java.com/fr/about/
https://go.java/
https://bitbucket.org/blog/best-practices-for-java-security
https://bitbucket.org/blog/best-practices-for-java-security
https://www.slideshare.net/frohoff1/appseccali-2015-marshalling-pickles
https://www.slideshare.net/frohoff1/appseccali-2015-marshalling-pickles
https://nlp.stanford.edu/IR-book/pdf/irbookprint.pdf
https://www.microsoft.com/security/blog/2021/03/02/hafnium-targeting-exchange-servers/
https://www.blackhat.com/docs/us-17/thursday/us-17-Munoz-Friday-The-13th-JSON-Attacks-wp.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Munoz-Friday-The-13th-JSON-Attacks-wp.pdf
https://www.cnet.com/news/privacy/equifaxs-hack-one-year-later-a-look-back-at-how-it-happened-and-whats-changed/
https://www.cnet.com/news/privacy/equifaxs-hack-one-year-later-a-look-back-at-how-it-happened-and-whats-changed/
https://adoptopenjdk.net/releases.html?variant=openjdk8&jvmVariant=openj9
https://adoptopenjdk.net/releases.html?variant=openjdk8&jvmVariant=openj9
https://openjdk.java.net/jeps/290
https://www.oracle.com/java/technologies/javase-downloads.html
https://www.oracle.com/java/technologies/javase/seccodeguide.html
https://www.oracle.com/java/technologies/javase/seccodeguide.html
https://docs.oracle.com/en/java/javase/11/core/serialization-filtering1.html#GUID-8296D8E8-2B93-4B9A-856E-0A65AF9B8C66
https://docs.oracle.com/en/java/javase/11/core/serialization-filtering1.html#GUID-8296D8E8-2B93-4B9A-856E-0A65AF9B8C66
https://docs.oracle.com/javase/tutorial/javabeans/advanced/longpersistence.html
https://docs.oracle.com/javase/tutorial/javabeans/advanced/longpersistence.html
https://owasp.org/www-project-top-ten/2017/A8_2017-Insecure_Deserialization
https://owasp.org/www-project-top-ten/2017/A8_2017-Insecure_Deserialization
https://owasp.org/www-community/vulnerabilities/Buffer_Overflow
https://owasp.org/www-community/vulnerabilities/Buffer_Overflow
https://owasp.org/Top10/

An In-depth Study of Java Deserialization Remote-Code Execution Exploits and Vulnerabilities 31

[53] Peles, O., Hay, R.: One Class to Rule Them All: 0-Day Deserialization Vulnerabilities in Android. In: 9th USENIX
Workshop on Offensive Technologies (WOOT 15) (2015)

[54] Raghavan, L.: Lessons learned from the java deserialization bug (Jan 2016), retrieved 2022 from https://medium.com/
paypal-engineering/lessons-learned-from-the-java-deserialization-bug-cb859e9c8d24

[55] Rasheed, S., Dietrich, J.: A Hybrid Analysis to Detect Java Serialisation Vulnerabilities. In: 35th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2020. pp. 1209–1213. IEEE (2020)

[56] Riggs, R., Waldo, J., Wollrath, A., Bharat, K.: Pickling state in the java system. Computing Systems 9(4), 291–312 (1996)
[57] Schneider, C.: Java deserialization security faq, retrieved 2022 from https://christian-schneider.net/

JavaDeserializationSecurityFAQ.html
[58] Seacord, R.: Combating java deserialization vulnerabilities with look-ahead object input streams (laois) (2017).

https://doi.org/10.13140/RG.2.2.34012.49283
[59] Security, H.: Insecure deserialization: Owasp top 10 - a8, retrieved 2022 from https://hdivsecurity.com/owasp-insecure-

deserialization
[60] Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc without function calls (on the x86). In:

Proceedings of the 2007 ACM Conference on Computer and Communications Security, CCS 2007, Alexandria, Virginia,
USA, October 28-31, 2007. pp. 552–561. ACM (2007)

[61] Shahriar, H., Haddad, H.: Object injection vulnerability discovery based on latent semantic indexing. In: Ossowski, S.
(ed.) Proceedings of the 31st Annual ACM Symposium on Applied Computing. pp. 801–807. ACM (2016)

[62] Shcherbakov, M., Musard, B.: Serialdetector: Principled and practical exploration of object injection vulnerabilities for
the web. In: Network and Distributed System Security Symposium (NDSS’21) (21-24 February 2021)

[63] Snyk: Snyk cli (2022), retrieved 2022 from https://github.com/snyk/snyk
[64] Software, E.: Kyro, retrieved 2022 from https://github.com/EsotericSoftware/kryo
[65] Stepankin, M.: [manager.paypal.com] remote code execution vulnerability (2015), retrieved 2022 from https://

artsploit.blogspot.com/2016/01/paypal-rce.html
[66] study, D.: Owasp top ten (2017), retrieved 2022 from https://owasp.org/www-project-top-ten/
[67] Tracy, M., Jansen, W., Scarfone, K., Butterfield, J.: Guidelines on electronic mail security (2007), retrieved 2022 from

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-45ver2.pdf
[68] Vásquez, M.L., Bavota, G., Escobar-Velasquez, C.: An empirical study on android-related vulnerabilities. In: González-

Barahona, J.M., Hindle, A., Tan, L. (eds.) Proceedings of the 14th International Conference on Mining Software
Repositories, MSR. pp. 2–13. IEEE Computer Society (2017)

[69] Waratek: The deserialization problem, retrieved 2022 from https://www.waratek.com/wp-content/uploads/2019/06/
WP-Deserialization-20190610.pdf

[70] Younan, Y.: FreeSentry: protecting against use-after-free vulnerabilities due to dangling pointers. In: 22nd Annual
Network and Distributed System Security Symposium, NDSS. The Internet Society (2015)

https://medium.com/paypal-engineering/lessons-learned-from-the-java-deserialization-bug-cb859e9c8d24
https://medium.com/paypal-engineering/lessons-learned-from-the-java-deserialization-bug-cb859e9c8d24
https://christian-schneider.net/JavaDeserializationSecurityFAQ.html
https://christian-schneider.net/JavaDeserializationSecurityFAQ.html
https://hdivsecurity.com/owasp-insecure-deserialization
https://hdivsecurity.com/owasp-insecure-deserialization
https://github.com/snyk/snyk
https://github.com/EsotericSoftware/kryo
https://artsploit.blogspot.com/2016/01/paypal-rce.html
https://artsploit.blogspot.com/2016/01/paypal-rce.html
https://owasp.org/www-project-top-ten/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-45ver2.pdf
https://www.waratek.com/wp-content/uploads/2019/06/WP-Deserialization-20190610.pdf
https://www.waratek.com/wp-content/uploads/2019/06/WP-Deserialization-20190610.pdf

32
Im

en
Sayar,A

lexandre
B
artel,Eric

B
odden,and

Yves
Le

Traon

Appendix A Vulnerable applications and their patches

Application CVE Code availability Vulnerability description Applied patch GA DV UC
WebSphere
Application
Server (WAS)
Community
Edition 3.0.0.3

CVE-2013-
1777

http://geronimo.apache.org/
downloads.html

Remote exploits can be prevented by
hiding the naming (1099) and JMX
(9999) ports behind a firewall or bind-
ing the ports to a local network inter-
face.

Add instruction
Thread.currentThread().set-
ContextClassLoader(get-
Class().getClassLoader()); in class
JMXConnector and other instructions in
the class JMXSecureConnector (patch
in http://svn.apache.org/viewvc?view=

revision&sortby=date&revision=1458113)

X

Jboss RichFaces
(Jboss-RF) 3.x
<= 3.3.3 and 4.x
<= 4.3.2

CVE-2013-
2165

https://richfaces.jboss.org/
download/archive.html

A flaw in the way JBoss RichFaces
handled deserialization allowing a re-
mote attacker to trigger the execu-
tion of the deserialization methods in
any serializable class deployed on the
server.

Create a whitelist of classes that are available to
participate in the RichFaces resource deserial-
isation process https://www.bleathem.ca/blog/
richfaces-security-advisory-cve-2013-2165/ and
https://codewhitesec.blogspot.com/2018/05/
poor-richfaces.html

X

Android < 5.0.0 CVE-2014-
7911

https://android.googlesour-
ce.com/?format=HTML

luni/src/main/java/java/io/-
ObjectInputStream.java in the
java.io.ObjectInputStream im-
plementation does not verify that
deserialization will result in an
object that met the requirements for
serialization, which allows attackers
to execute arbitrary code via a crafted
finalize method for a serialized
object in an ArrayMap Parcel within
an intent sent to system_service,
as demonstrated by the finalize
method of android.os.BinderProxy

Add some checks that the class being dese-
rialized matches the type information (enum,
serializable, externalizable) held in the
stream. Delayed static initialization of classes
until the type of the class has been validated
against the stream content in some cases. (see
https://android.googlesource.com/platform/-
libcore/+/738c833d38d41f8f76eb7e77ab39a-
dd82b1ae1e2%5E%21/#F0 and
https://android.googlesource.com/platform/-
libcore/+/738c833d38d41f8f76eb7e77ab39a-
dd82b1ae1e2)

X

http://geronimo.apache.org/downloads.html
http://geronimo.apache.org/downloads.html
http://svn.apache.org/viewvc?view=revision&sortby=date&revision=1458113
http://svn.apache.org/viewvc?view=revision&sortby=date&revision=1458113
https://richfaces.jboss.org/download/archive.html
https://richfaces.jboss.org/download/archive.html
https://www.bleathem.ca/blog/richfaces-security-advisory-cve-2013-2165/
https://www.bleathem.ca/blog/richfaces-security-advisory-cve-2013-2165/
https://codewhitesec.blogspot.com/2018/05/poor-richfaces.html
https://codewhitesec.blogspot.com/2018/05/poor-richfaces.html
https://android.googlesource.com/?format=HTML
https://android.googlesource.com/?format=HTML
https://android.googlesource.com/platform/libcore/+/738c833d38d41f8f76eb7e77ab39add82b1ae1e2%5E%21/#F0
https://android.googlesource.com/platform/libcore/+/738c833d38d41f8f76eb7e77ab39add82b1ae1e2%5E%21/#F0
https://android.googlesource.com/platform/libcore/+/738c833d38d41f8f76eb7e77ab39add82b1ae1e2%5E%21/#F0
https://android.googlesource.com/platform/libcore/+/738c833d38d41f8f76eb7e77ab39add82b1ae1e2
https://android.googlesource.com/platform/libcore/+/738c833d38d41f8f76eb7e77ab39add82b1ae1e2
https://android.googlesource.com/platform/libcore/+/738c833d38d41f8f76eb7e77ab39add82b1ae1e2

A
n
In-depth

Study
ofJava

D
eserialization

R
em

ote-C
ode

Execution
Exploits

and
V
ulnerabilities

33
Atlassian Bam-
boo before 5.9.9
and 5.10.x be-
fore 5.10.0

CVE-2014-
9757

https://www.atlassian.com/
software/bamboo/download-
archives

The Ignite Realtime Smack XMPP API,
as used in Atlassian Bamboo before
5.9.9 and 5.10.x before 5.10.0, allows re-
mote configured XMPP servers to exe-
cute arbitrary Java code via serialized
data in an XMPP message

The origin of the attack is the Smack library
used in Bamboo. The patched version Bamboo
5.10.0 uses an updated version of the smack
library in which a lot of modifications are
brought: removing some classes (like Connection,
Chat, ConnectionManager), modify the class
XMPPConnection into an Interface , etc. (Patch
obtained doing the diff between the version 5.9.7
and 5.10.0 of Bamboo, and more preciely the
smack library).

X

Atlassian Bam-
boo 2.2 before
5.8.5 and 5.9.x
before 5.9.7

CVE-2015-
6576

https://www.atlassian.com/
software/bamboo/download-
archives

Bamboo 2.2 before 5.8.5 and 5.9.x be-
fore 5.9.7 allows remote attackers with
access to the Bamboo web interface
to execute arbitrary Java code via an
unspecified resource.

Removes the deserializeObject method from
the DeliverMessageServlet vulnerable class.

X

Atlassian Bam-
boo before 5.9.9
and 5.10.x be-
fore 5.10.0

CVE-2015-
8360

https://www.atlassian.com/
software/bamboo/download-
archives

An unspecified resource in Atlassian
Bamboo before 5.9.9 and 5.10.x before
5.10.0 allows remote attackers to exe-
cute arbitrary Java code via serialized
data to the JMS port.

Use of black and white lists for serializa-
tion (patch obtained using the diff between
the versions 5.10.0 and 5.9.7: there are
two files serialization-blacklist.list
and serialization-whitelist.list in
the path "atlassian-bamboo-5.10.0/atlassian-
bamboo/WEB-INF/classes")

X

Jenkins < 1.638
and LTS <

1.625.2

CVE-2015-
8103

https://github.com/jenkinsci/
jenkins https://wiki.jenkins.io/
display/JENKINS/Jenkins+CLI

The Jenkins CLI subsystem in Jenkins
before 1.638 and LTS before 1.625.2 al-
lows remote attackers to execute arbi-
trary code via a crafted serialized Java
object

Unknown patch. Mitigation: remove/disable
the CLI support inside of the running Jenkins
server (https://www.jenkins.io/blog/2015/11/
06/mitigating-unauthenticated-remote-code-
execution-0-day-in-jenkins-cli/)

X

https://www.atlassian.com/software/bamboo/download-archives
https://www.atlassian.com/software/bamboo/download-archives
https://www.atlassian.com/software/bamboo/download-archives
https://www.atlassian.com/software/bamboo/download-archives
https://www.atlassian.com/software/bamboo/download-archives
https://www.atlassian.com/software/bamboo/download-archives
https://www.atlassian.com/software/bamboo/download-archives
https://www.atlassian.com/software/bamboo/download-archives
https://www.atlassian.com/software/bamboo/download-archives
https://github.com/jenkinsci/jenkins
https://github.com/jenkinsci/jenkins
https://wiki.jenkins.io/display/JENKINS/Jenkins+CLI
https://wiki.jenkins.io/display/JENKINS/Jenkins+CLI
https://www.jenkins.io/blog/2015/11/06/mitigating-unauthenticated-remote-code-execution-0-day-in-jenkins-cli/
https://www.jenkins.io/blog/2015/11/06/mitigating-unauthenticated-remote-code-execution-0-day-in-jenkins-cli/
https://www.jenkins.io/blog/2015/11/06/mitigating-unauthenticated-remote-code-execution-0-day-in-jenkins-cli/

34
Im

en
Sayar,A

lexandre
B
artel,Eric

B
odden,and

Yves
Le

Traon
VMware vReal-
ize Orchestrator
6.x, vCenter
Orchestrator
5.x, vRealize
Operations
6.x, vCenter
Operations 5.x,
and vCenter
Application
Discovery Man-
ager (vADM)
7.x

CVE-2015-
6934

https://docs.vmware.com/
en/vRealize-Orchestrator/
7.6/rn/VMware-vRealize-
Orchestrator-76-Release-
Notes.html

Remote attackers can execute arbitrary
commands via a crafted serialized Java
object, related to the Apache Com-
mons Collections library

Replace the Commons collections library by
the commons-collections-3.2.2.jar in the depen-
dencies of the mentioned products (see https:
//kb.vmware.com/s/article/2141244 and https://
kb.vmware.com/s/article/2141244)

X

Adobe Experi-
ence Manager
(Adobe-EM)
5.6.1, 6.0.0, and
6.1.0

CVE-2016-
0958

No Adobe Experience Manager 5.6.1, 6.0.0,
and 6.1.0 might allow remote attackers
to have an unspecified impact via a
crafted serialized Java object.

Unknown patch X

Hazelcast <

3.11
CVE-2016-
10750

https://github.com/hazelcast/
hazelcast

A flaw was found in the cluster join
procedure in Hazelcast. This flaw al-
lows an attacker to gain remote code
execution via Java deserialization.

Add class names blacklisting and whitelisting
by defining the following system properties:
hazelcast.serialization.filter.enabled,
hazelcast.serialization.filter.black-
list.classes, hazelcast.serialization.filter.black-
list.packages, hazelcast.serialization.filter.white-
list.classes and
hazelcast.serialization.filter.white-
list.packages (see https://docs.hazelcast.org/
docs/3.10.5/manual/html-single/
index.html#untrusted-deserialization-
protection)

X

Apache OF-
Biz 12.04.x
< 12.04.06
and 13.07.x <

13.07.03

CVE-2016-
2170

http://archive.apache.org/dist/
ofbiz/

Remote attackers can execute arbitrary
commands via a crafted serialized Java
object, related to the Apache Com-
mons Collections library

Update commons collections to 4.1 and
Comment out RMI related code (see https://
issues.apache.org/jira/browse/OFBIZ-6942, https:
//markmail.org/message/nh6csf4fun5n6e23 and
https://issues.apache.org/jira/browse/OFBIZ-
6726)

X

https://docs.vmware.com/en/vRealize-Orchestrator/7.6/rn/VMware-vRealize-Orchestrator-76-Release-Notes.html
https://docs.vmware.com/en/vRealize-Orchestrator/7.6/rn/VMware-vRealize-Orchestrator-76-Release-Notes.html
https://docs.vmware.com/en/vRealize-Orchestrator/7.6/rn/VMware-vRealize-Orchestrator-76-Release-Notes.html
https://docs.vmware.com/en/vRealize-Orchestrator/7.6/rn/VMware-vRealize-Orchestrator-76-Release-Notes.html
https://docs.vmware.com/en/vRealize-Orchestrator/7.6/rn/VMware-vRealize-Orchestrator-76-Release-Notes.html
https://kb.vmware.com/s/article/2141244
https://kb.vmware.com/s/article/2141244
https://kb.vmware.com/s/article/2141244
https://kb.vmware.com/s/article/2141244
https://github.com/hazelcast/hazelcast
https://github.com/hazelcast/hazelcast
https://docs.hazelcast.org/docs/3.10.5/manual/html-single/index.html#untrusted-deserialization-protection
https://docs.hazelcast.org/docs/3.10.5/manual/html-single/index.html#untrusted-deserialization-protection
https://docs.hazelcast.org/docs/3.10.5/manual/html-single/index.html#untrusted-deserialization-protection
https://docs.hazelcast.org/docs/3.10.5/manual/html-single/index.html#untrusted-deserialization-protection
http://archive.apache.org/dist/ofbiz/
http://archive.apache.org/dist/ofbiz/
https://issues.apache.org/jira/browse/OFBIZ-6942
https://issues.apache.org/jira/browse/OFBIZ-6942
https://markmail.org/message/nh6csf4fun5n6e23
https://markmail.org/message/nh6csf4fun5n6e23
https://issues.apache.org/jira/browse/OFBIZ-6726
https://issues.apache.org/jira/browse/OFBIZ-6726

A
n
In-depth

Study
ofJava

D
eserialization

R
em

ote-C
ode

Execution
Exploits

and
V
ulnerabilities

35
SolarWinds Vir-
tualization Man-
ager <= 6.3.1

CVE-2016-
3642

No The vulnerability exists due to the de-
serialization of untrusted data in the
RMI service running on port 1099/TCP.
A remote attacker can execute operat-
ing system commands as an unprivi-
leged user8

Inaccessible patch (it is mentioned that there is a
hotfix in https://packetstormsecurity.com/
files/137486/Solarwinds-Virtualization-
Manager-6.3.1-Java-Deserialization.html
and https://seclists.org/fulldisclosure/2016/Jun/29
but no more details are given)

X

HP Network
Node Manager
i (HP-NNMi)
Software 10.00,
10.01 (patch1),
10.01 (patch 2),
10.10

CVE-2016-
4398

No A vulnerability in Apache Commons
Collections for handling Java object
deserialization was addressed by HPE
Network Node Manager i (NNMi) Soft-
ware. The vulnerability could be re-
motely exploited to allow remote code
execution.

Unknown patch X

Apache Wicket
6.x < 6.25.0 and
1.5.x < 1.5.17

CVE-2016-
6793

https://archive.apache.org/dist/
wicket/

The DiskFileItem class in Apache
Wicket allows remote attackers
to cause a denial of service (infi-
nite loop) and write to, move, and
delete files with the permissions of
DiskFileItem, and if running on a
Java VM before 1.3.1, execute arbitrary
code via a crafted serialized Java
object.

Change the class DiskFileItem:
add a check instruction
Files.checkFileName(tempDir.getPath())
in the method getTempFile() of the patched
version (patch obtained by doing the diff betwwen
the 6.24.0 and 6.25.0 versions)

X

Red Hat JBoss
Enterprise
Application
Platform (Jboss-
EAP) 4 and
5

CVE-2016-
7065

https://developers.redhat.com/
products/eap/download

JBoss EAP 4 and 5 JMX servlet is ex-
posed on port 8080/TCP with authen-
tication by default. The communica-
tion employs serialized Java objects,
encapsulated in HTTP requests and re-
sponses. The server deserializes these
objects. This behavior can be exploited
to cause a denial of service and poten-
tially execute arbitrary code

Red Hat does not fix the issue because JBoss EAP
4 is out of maintenance support and JBoss EAP
5 is close to the end of its maintenance period
(see https://seclists.org/fulldisclosure/2016/Nov/
143 and https://seclists.org/fulldisclosure/2016/
Nov/143)

X

8information about a cyber attack in Solarwinds are available in https://www.secureworld.io/industry-news/solarwinds-cyber-attack-impact-update

https://packetstormsecurity.com/files/137486/Solarwinds-Virtualization-Manager-6.3.1-Java-Deserialization.html
https://packetstormsecurity.com/files/137486/Solarwinds-Virtualization-Manager-6.3.1-Java-Deserialization.html
https://packetstormsecurity.com/files/137486/Solarwinds-Virtualization-Manager-6.3.1-Java-Deserialization.html
https://seclists.org/fulldisclosure/2016/Jun/29
https://archive.apache.org/dist/wicket/
https://archive.apache.org/dist/wicket/
https://developers.redhat.com/products/eap/download
https://developers.redhat.com/products/eap/download
https://seclists.org/fulldisclosure/2016/Nov/143
https://seclists.org/fulldisclosure/2016/Nov/143
https://seclists.org/fulldisclosure/2016/Nov/143
https://seclists.org/fulldisclosure/2016/Nov/143
https://www.secureworld.io/industry-news/solarwinds-cyber-attack-impact-update

36
Im

en
Sayar,A

lexandre
B
artel,Eric

B
odden,and

Yves
Le

Traon
Soffid IAM <

1.7.5
CVE-2017-
9363

https://github.com/SoffidIAM/
console

Untrusted Java serialization in Soffid
IAM console before 1.7.5 allowing re-
mote attackers to achieve arbitrary re-
mote code execution via a crafted au-
thentication request

Disable two features in the class
servlet.SignatureReceiver via
throwing two exceptions new
ServletException("Disabled feature");
and new UiException("Disabled feature");
(see https://github.com/SoffidIAM/console/com-
mit/8e9e7c9e537acfc2a245fbbeb41a143b5b-
4f7230#diff-544c1cb1ac64f2f62b6b326bd0b-
1b6addc17f19416878d319d3643e302a043b7)

X

ZTE ZXIPTV-
EPG <

V5.09.02.02T4

CVE-2017-
10934

No This product uses the Java RMI service
in which the servers use the Apache
Commons Collections (ACC) library
that may result in Java deserialization
vulnerabilities. An unauthenticated re-
mote attacker can exploit the vulner-
abilities by sending a crafted RMI re-
quest to execute arbitrary code on the
target host

Unknown patch. Workaround: Ensure that
all exposed ports used by the server, in-
cluding the RMI registry port, are fire-
walled from any untrusted IP address. (see
http://support.zte.com.cn/support/news/
LoopholeInfoDetail.aspx?newsId=1008682)

X

Akka versions
<= 2.4.16 and
2.5-M1

CVE-2017-
1000034

https://mvnrepository.com/
artifact/com.typesafe.akka/
akka-actor_2.12

An attacker that can connect to an
ActorSystem exposed via Akka Re-
mote over TCP can gain remote code
execution capabilities in the context
of the JVM process that runs the
ActorSystem under some conditions
(JavaSerializer is enabled (default
in Akka 2.4.x), etc.)

The system is configured with disabled Java serial-
izer: using DisabledJavaSerializer instead of
JavaSerializer (see the file reference.conf
for explanation). Additional protection can be
achieved when running in an untrusted network
by enabling TLS with mutual authentication.
https://doc.akka.io/docs/akka/2.4/security/2017-
02-10-java-serialization.html, https://akka.io/
blog/news/2017/02/10/akka-2.4.17-released
and https://doc.akka.io/docs/akka/2.4/scala/
remoting.html#remote-tls-scala

X

Cisco Unity
Express (Cisco-
UE) < release
9.0.6

CVE-2018-
15381

No A remote user can create specially
crafted content that, when loaded by
the target user, will trigger a Java dese-
rialization flaw and execute arbitrary
code on the target user’s system. The
code will run with root privileges.

Workaround: this vulnerability can be exploited
over TCP port 1099. The CUE does not need this
port to be open externally and may be blocked to
protect against remote exploitation of this vulner-
ability. An administrator can configure an access
control list that blocks all traffic with a destination
port of TCP/1099 from reaching the CUE. (see
https://tools.cisco.com/security/center/content/
CiscoSecurityAdvisory/cisco-sa-20181107-cue)

X

https://github.com/SoffidIAM/console
https://github.com/SoffidIAM/console
https://github.com/SoffidIAM/console/commit/8e9e7c9e537acfc2a245fbbeb41a143b5b4f7230#diff-544c1cb1ac64f2f62b6b326bd0b1b6addc17f19416878d319d3643e302a043b7
https://github.com/SoffidIAM/console/commit/8e9e7c9e537acfc2a245fbbeb41a143b5b4f7230#diff-544c1cb1ac64f2f62b6b326bd0b1b6addc17f19416878d319d3643e302a043b7
https://github.com/SoffidIAM/console/commit/8e9e7c9e537acfc2a245fbbeb41a143b5b4f7230#diff-544c1cb1ac64f2f62b6b326bd0b1b6addc17f19416878d319d3643e302a043b7
https://github.com/SoffidIAM/console/commit/8e9e7c9e537acfc2a245fbbeb41a143b5b4f7230#diff-544c1cb1ac64f2f62b6b326bd0b1b6addc17f19416878d319d3643e302a043b7
http://support.zte.com.cn/support/news/LoopholeInfoDetail.aspx?newsId=1008682
http://support.zte.com.cn/support/news/LoopholeInfoDetail.aspx?newsId=1008682
https://mvnrepository.com/artifact/com.typesafe.akka/akka-actor_2.12
https://mvnrepository.com/artifact/com.typesafe.akka/akka-actor_2.12
https://mvnrepository.com/artifact/com.typesafe.akka/akka-actor_2.12
https://doc.akka.io/docs/akka/2.4/security/2017-02-10-java-serialization.html
https://doc.akka.io/docs/akka/2.4/security/2017-02-10-java-serialization.html
https://akka.io/blog/news/2017/02/10/akka-2.4.17-released
https://akka.io/blog/news/2017/02/10/akka-2.4.17-released
https://doc.akka.io/docs/akka/2.4/scala/remoting.html#remote-tls-scala
https://doc.akka.io/docs/akka/2.4/scala/remoting.html#remote-tls-scala
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20181107-cue
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20181107-cue

A
n
In-depth

Study
ofJava

D
eserialization

R
em

ote-C
ode

Execution
Exploits

and
V
ulnerabilities

37
Apache Storm
versions 1.1.0 to
1.2.2

CVE-2018-
11779

https://archive.apache.org/dist/
storm/

When the user is using the storm-
kafka-client or storm-kafka modules,
it is possible to cause the Storm UI dae-
mon to deserialize user provided bytes
into a Java class.

Update implementation of serializable classes in
v1.2.3: remove the indirect call to readObject
from getSetComponentObject method (using
the diff between the vulnerable 1.2.2 version and
the non vulnerable 1.2.3 version)

X

Jenkins Pipeline
supporting
APIs Plugin <=

2.17

CVE-2018-
1000058

https://updates.jenkins.io/
download/plugins/workflow-
support/

Methods related to Java deserializa-
tion like readResolve implemented
in Pipeline scripts were not subject to
sandbox protection, and could there-
fore execute arbitrary code. This could
be exploited e.g. by regular Jenkins
users with the permission to config-
ure Pipelines in Jenkins, or by trusted
committers to repositories containing
Jenkinsfiles.

Adding sandboxing: reinforcement of the
class RiverWriter using a try/catch bloc in
which the serialization is carried out inside a
GroovySandbox.runInSandbox() method. The
class RiverReader is also strengthen by perform-
ing the deserialization inside a sandbox presented
by an inner class SandboxedUnmarshaller. The
patch s found using the diff between the 2.17
(vulnerable) and 2.18 (patched) versions.

X

Log4j CVE-2019-
17571

https://github.com/apache/
log4j

A vulnerable SocketServer class may
lead to the deserialization of untrusted
data allowing an attacker to remotely
execute arbitrary code when combined
with a deserialization gadget

Add class filtering to AbstractSocketServer:
this allows a whitelist of class names to be spec-
ified to configure which classes are allowed to
be deserialized in both TcpSocketServer and Udp-
SocketServer (link: https://git-wip-us.apache.org/
repos/asf?p=logging-log4j2.git;h=5dcc192)

X

JetBrains Team-
City before
2019.1.4

CVE-2019-
18364

https://www.jetbrains.com/fr-
fr/teamcity/download/
other.html

Insecure Java Deserialization could po-
tentially allow remote code execution

Unknown patch (researching patch exceeds time
limit)

X

Apache Dubbo
2.7.0 before
2.7.5, 2.6.0
before 2.6.8, and
2.5.x versions

CVE-2019-
17564

https://github.com/apache/
dubbo

An attacker may submit a POST re-
quest with a Java object in it to com-
pletely compromise a Provider in-
stance of Apache Dubbo, if this in-
stance enables HTTP.

The patched version does not support outdated
http-invoker rpc protocol anymore (see
https://github.com/apache/dubbo/commit/
9b18fe228971eaeca9b87d7b7e95df1c2a8ff91b and
https://github.com/apache/dubbo/releases/tag/
dubbo-2.7.5)

X

https://archive.apache.org/dist/storm/
https://archive.apache.org/dist/storm/
https://updates.jenkins.io/download/plugins/workflow-support/
https://updates.jenkins.io/download/plugins/workflow-support/
https://updates.jenkins.io/download/plugins/workflow-support/
https://github.com/apache/log4j
https://github.com/apache/log4j
https://git-wip-us.apache.org/repos/asf?p=logging-log4j2.git;h=5dcc192
https://git-wip-us.apache.org/repos/asf?p=logging-log4j2.git;h=5dcc192
https://www.jetbrains.com/fr-fr/teamcity/download/other.html
https://www.jetbrains.com/fr-fr/teamcity/download/other.html
https://www.jetbrains.com/fr-fr/teamcity/download/other.html
https://github.com/apache/dubbo
https://github.com/apache/dubbo
https://github.com/apache/dubbo/commit/9b18fe228971eaeca9b87d7b7e95df1c2a8ff91b
https://github.com/apache/dubbo/commit/9b18fe228971eaeca9b87d7b7e95df1c2a8ff91b
https://github.com/apache/dubbo/releases/tag/dubbo-2.7.5
https://github.com/apache/dubbo/releases/tag/dubbo-2.7.5

38
Im

en
Sayar,A

lexandre
B
artel,Eric

B
odden,and

Yves
Le

Traon
Apache Ofbiz
from 16.11.01 to
16.11.05

CVE-2019-
0189

https://archive.apache.org/dist/
ofbiz/

This issue is exposed by the
"webtools/control/httpService"
URL, and uses Java deserialization
to perform code execution. In the
HttpEngine, the value of the request
parameter serviceContext is passed
to the deserialize method of
XmlSerializer.

Improve ObjectInputStream class
and redefine it as a new class
SafeObjectInputStream in which there is
an added whitelist. Also add objects from
org.apache.commons.fileupload (namely
DiskFileItem and FileItemHeadersImpl)
as non-serializable in this class
SafeObjectInputStream (see the diff be-
tween the two versions 16.11.05 and 16.11.06. See
also https://gitbox.apache.org/repos/asf?p=of-
biz-framework.git;a=blob;f=framework/ba-
se/src/main/java/org/apache/ofbiz/base/-
util/SafeObjectInputStream.java;h=d50cf-
bf11fc4d3b5855c53cb38a6cde7e101dc83;h-
b=3f60efb)

X

Apache
Tapestry

CVE-2019-
0195

https://downloads.apache.org/
tapestry/

Manipulating classpath asset file
URLs, an attacker could guess the path
to a known file in the classpath and
have it downloaded. It is possible to
download arbitrary class files from the
classpath by providing a crafted asset
file URL. An attacker is able to down-
load the file AppModule.class by
requesting the URL ’http://localhost:
8080/assets/something/services/
AppModule.class’ which contains a
HMAC secret key.

The fix for that bug was a blacklist filter
that checks if the URL ends with ’.class’,
’.properties’ or ’.xml’. However, it is
proven that this blacklist solution can sim-
ply be bypassed by appending a ’/’ at the
end of the URL: ’http://localhost:8080/assets/
something/services/AppModule.class/’ (source:
https://lists.apache.org/thread.html/r237ff-
7f286bda31682c254550c1ebf92b0ec61329b-
32fbeb2d1c8751@%3Cusers.tapestry.apache.-
org%3E)

X

Apache Tomcat CVE-2020-
9484

https://github.com/apache/
tomcat

Deserialization flaw in session persis-
tence storage FileStore leading to re-
mote code execution

Update the class FileStore with
some checks (patch in https://
github.com/apache/tomcat/commit/
bb33048e3f9b4f2b70e4da2e6c4e34ca89023b1b)

X

https://archive.apache.org/dist/ofbiz/
https://archive.apache.org/dist/ofbiz/
https://gitbox.apache.org/repos/asf?p=ofbiz-framework.git;a=blob;f=framework/base/src/main/java/org/apache/ofbiz/base/util/SafeObjectInputStream.java;h=d50cfbf11fc4d3b5855c53cb38a6cde7e101dc83;hb=3f60efb
https://gitbox.apache.org/repos/asf?p=ofbiz-framework.git;a=blob;f=framework/base/src/main/java/org/apache/ofbiz/base/util/SafeObjectInputStream.java;h=d50cfbf11fc4d3b5855c53cb38a6cde7e101dc83;hb=3f60efb
https://gitbox.apache.org/repos/asf?p=ofbiz-framework.git;a=blob;f=framework/base/src/main/java/org/apache/ofbiz/base/util/SafeObjectInputStream.java;h=d50cfbf11fc4d3b5855c53cb38a6cde7e101dc83;hb=3f60efb
https://gitbox.apache.org/repos/asf?p=ofbiz-framework.git;a=blob;f=framework/base/src/main/java/org/apache/ofbiz/base/util/SafeObjectInputStream.java;h=d50cfbf11fc4d3b5855c53cb38a6cde7e101dc83;hb=3f60efb
https://gitbox.apache.org/repos/asf?p=ofbiz-framework.git;a=blob;f=framework/base/src/main/java/org/apache/ofbiz/base/util/SafeObjectInputStream.java;h=d50cfbf11fc4d3b5855c53cb38a6cde7e101dc83;hb=3f60efb
https://gitbox.apache.org/repos/asf?p=ofbiz-framework.git;a=blob;f=framework/base/src/main/java/org/apache/ofbiz/base/util/SafeObjectInputStream.java;h=d50cfbf11fc4d3b5855c53cb38a6cde7e101dc83;hb=3f60efb
https://downloads.apache.org/tapestry/
https://downloads.apache.org/tapestry/
'http://localhost:8080/assets/something/services/AppModule.class'
'http://localhost:8080/assets/something/services/AppModule.class'
'http://localhost:8080/assets/something/services/AppModule.class'
'http://localhost:8080/assets/something/services/AppModule.class/'
'http://localhost:8080/assets/something/services/AppModule.class/'
https://lists.apache.org/thread.html/r237ff7f286bda31682c254550c1ebf92b0ec61329b32fbeb2d1c8751@%3Cusers.tapestry.apache.org%3E
https://lists.apache.org/thread.html/r237ff7f286bda31682c254550c1ebf92b0ec61329b32fbeb2d1c8751@%3Cusers.tapestry.apache.org%3E
https://lists.apache.org/thread.html/r237ff7f286bda31682c254550c1ebf92b0ec61329b32fbeb2d1c8751@%3Cusers.tapestry.apache.org%3E
https://lists.apache.org/thread.html/r237ff7f286bda31682c254550c1ebf92b0ec61329b32fbeb2d1c8751@%3Cusers.tapestry.apache.org%3E
https://github.com/apache/tomcat
https://github.com/apache/tomcat
https://github.com/apache/tomcat/commit/bb33048e3f9b4f2b70e4da2e6c4e34ca89023b1b
https://github.com/apache/tomcat/commit/bb33048e3f9b4f2b70e4da2e6c4e34ca89023b1b
https://github.com/apache/tomcat/commit/bb33048e3f9b4f2b70e4da2e6c4e34ca89023b1b

A
n
In-depth

Study
ofJava

D
eserialization

R
em

ote-C
ode

Execution
Exploits

and
V
ulnerabilities

39
OpenNMS Hori-
zon < 26.0.1
and Meridian
before 2018.1.19
and 2019 before
2019.1.7

CVE-2020-
12760

https://github.com/OpenNMS/
opennms/releases/tag/
opennms-26.0.1-1

The ActiveMQ channel configuration
allowed for arbitrary deserialization of
Java objects leading to remote code ex-
ecution for any authenticated channel
user regardless of its assigned permis-
sions

Remove a parameter after stopping the
use of serialized object messages in a
file applicationContext-daemon.xml:
<property name="trustAllPackages"
value="true"/> (see https://github.com/
OpenNMS/opennms/pull/2983 and https://
github.com/OpenNMS/opennms/pull/2983/files/
e21fc14ce355533493da0db815bd81a66e291382)
https://github.com/davidhalter/parso/issues/
75#)

X

IBM Maximo
Asset Manage-
ment 7.6.0 and
7.6.1

CVE-2020-
4521

https://github.com/nishi2go/
maximo-docker

IBMMaximo Asset Management could
allow a remote authenticated attacker
to execute arbitrary code on the sys-
tem, caused by an unsafe deserial-
ization in Java. By sending specially-
crafted request, an attacker could ex-
ploit this vulnerability to execute arbi-
trary code on the system

Inaccessible patch (when connecting to https:
//www.ibm.com/support/pages/node/6332587 an
error message ("No applicable IBM support agree-
ment found for one or more of the products you
selected") appears)

X

Cisco Security
Manager (Cisco-
SM)

CVE-2020-
27131

No Multiple vulnerabilities in the Java de-
serialization function that is used by
Cisco Security Manager could allow
an unauthenticated, remote attacker
to execute arbitrary commands on an
affected device. These vulnerabilities
are due to insecure deserialization of
user-supplied content by the affected
software. An attacker could exploit
these vulnerabilities by sending a ma-
licious serialized Java object to a spe-
cific listener on an affected system. A
successful exploit could allow the at-
tacker to execute arbitrary commands
on the device with the privileges of NT
AUTHORITY\SYSTEM on the Win-
dows target host. Cisco has not re-
leased software updates that address
these vulnerabilities

Unknown patch X

https://github.com/OpenNMS/opennms/releases/tag/opennms-26.0.1-1
https://github.com/OpenNMS/opennms/releases/tag/opennms-26.0.1-1
https://github.com/OpenNMS/opennms/releases/tag/opennms-26.0.1-1
https://github.com/OpenNMS/opennms/pull/2983
https://github.com/OpenNMS/opennms/pull/2983
https://github.com/OpenNMS/opennms/pull/2983/files/e21fc14ce355533493da0db815bd81a66e291382
https://github.com/OpenNMS/opennms/pull/2983/files/e21fc14ce355533493da0db815bd81a66e291382
https://github.com/OpenNMS/opennms/pull/2983/files/e21fc14ce355533493da0db815bd81a66e291382
https://github.com/davidhalter/parso/issues/75#
https://github.com/davidhalter/parso/issues/75#
https://github.com/nishi2go/maximo-docker
https://github.com/nishi2go/maximo-docker
https://www.ibm.com/support/pages/node/6332587
https://www.ibm.com/support/pages/node/6332587

40
Im

en
Sayar,A

lexandre
B
artel,Eric

B
odden,and

Yves
Le

Traon
Taoensso Nippy
< 2.14.2

CVE-2020-
24164

https://github.com/
ptaoussanis/nippy

A deserialization flaw is present in
Taoensso Nippy before 2.14.2. In some
circumstances, it is possible for an
attacker to create a malicious pay-
load that, when deserialized, will al-
low arbitrary code to be executed.
This occurs because there is auto-
matic use of the Java Serializable
interface: Nippy introduced a feature
to allow the automatic use of Java’s
Serializable interface as a fallback
for types that Nippy didn’t support via
its own Freezable protocol.

Use a predicate (fn allow-class?
[class-name]) fn that can be assigned
to ’*freeze-serializable-allowlist*’
and/or ’*thaw-serializable-allowlist*’.
This predicate is used to record information
about which classes have been using Nippy’s
Serializable support in the user’s environ-
ment (see http://ptaoussanis.github.io/nippy/
taoensso.nippy.html#var-allow-and-record-
any-serializable-class-unsafe)

X

Apache
Tapestry
4

CVE-2020-
17531

https://github.com/apache/
tapestry4

Apache Tapestry 4will attempt to dese-
rialize the "sp" parameter even before
invoking the page’s validate method,
leading to deserialization without au-
thentication

Apache Tapestry 4 reached end of life in
2008 and no update to address this is-
sue is released (the upgrade to the latest
Apache Tapestry 5 version is necessary) (see
https://lists.apache.org/thread.html/r700a-
6aa234dbff0555d4187bdc8274d7e4c0afbf35b9-
a3457f09ee76%40%3Cusers.tapestry.apache.-
org%3E) and https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2020-17531)

X

Gradle Enter-
prise Maven
Extension

CVE-2020-
15777

https://mvnrepository.com/
artifact/com.gradle/gradle-
enterprise-maven-extension

The extension uses a socket connec-
tion to send serialized Java objects.
Deserialization is not restricted to an
allow-list, thus allowing an attacker
to achieve code execution via a ma-
licious deserialization gadget chain.
The socket is not bound exclusively
to localhost. The port this socket is as-
signed to is randomly selected and is
not intentionally exposed to the pub-
lic (either by design or documenta-
tion). This could potentially be used
to achieve remote code execution and
local privilege escalation.

Add an allow-list in a class
ValidatingObjectInputStream (patch ob-
tained by doing the diff between the vulnerable
1.5.3 and the non-vulnerable 1.6 versions)

X

https://github.com/ptaoussanis/nippy
https://github.com/ptaoussanis/nippy
http://ptaoussanis.github.io/nippy/taoensso.nippy.html#var-allow-and-record-any-serializable-class-unsafe
http://ptaoussanis.github.io/nippy/taoensso.nippy.html#var-allow-and-record-any-serializable-class-unsafe
http://ptaoussanis.github.io/nippy/taoensso.nippy.html#var-allow-and-record-any-serializable-class-unsafe
https://github.com/apache/tapestry4
https://github.com/apache/tapestry4
https://lists.apache.org/thread.html/r700a6aa234dbff0555d4187bdc8274d7e4c0afbf35b9a3457f09ee76%40%3Cusers.tapestry.apache.org%3E
https://lists.apache.org/thread.html/r700a6aa234dbff0555d4187bdc8274d7e4c0afbf35b9a3457f09ee76%40%3Cusers.tapestry.apache.org%3E
https://lists.apache.org/thread.html/r700a6aa234dbff0555d4187bdc8274d7e4c0afbf35b9a3457f09ee76%40%3Cusers.tapestry.apache.org%3E
https://lists.apache.org/thread.html/r700a6aa234dbff0555d4187bdc8274d7e4c0afbf35b9a3457f09ee76%40%3Cusers.tapestry.apache.org%3E
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-17531
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-17531
https://mvnrepository.com/artifact/com.gradle/gradle-enterprise-maven-extension
https://mvnrepository.com/artifact/com.gradle/gradle-enterprise-maven-extension
https://mvnrepository.com/artifact/com.gradle/gradle-enterprise-maven-extension

A
n
In-depth

Study
ofJava

D
eserialization

R
em

ote-C
ode

Execution
Exploits

and
V
ulnerabilities

41
Apache Camel
Netty (Camel-
Netty)

CVE-2020-
11973

https://github.com/apache/
camel/tree/main/components/
camel-netty

Apache Camel RabbitMQ enables java
deserialization, by default, without any
means of disabling which can lead to
arbitrary code being executed. The
highest threat from this vulnerability
is to data confidentiality and integrity
as well as system availability

Disable object serialization: only Strings are
allowed to be serialized by default, anything
else will only be serialized with a custom en-
coder/decoder (https://github.com/apache/camel/
pull/3537)

X

Apache Camel
RabbitMQ
(Camel-
RabbitMQ)
2.22.x, 2.23.x,
2.24.x, 2.25.0,
3.0.0 up to 3.1.0

CVE-2020-
11972

https://github.com/apache/
camel

Apache Camel RabbitMQ enables java
deserialization, by default, without any
means of disabling which can lead to
arbitrary code being executed. The
highest threat from this vulnerability
is to data confidentiality and integrity
as well as system availability

Disable RabbitMQ Java serialization by de-
fault. It can be re-enabled using a param-
eter "allowMessageBodySerialization"
in a class RabbitMQEndpoint (see
https://github.com/zregvart/camel/commit/
c15ed20d92b5c920e9e55fe584f8e412b23f14f6)

X

Emissary 6.4.0 CVE-2021-
32634

https://github.com/
NationalSecurityAgency/
emissary

Unsafe Deserialization of post-
authenticated requests to the
WorkSpaceClientEnqueue.action
REST endpoint.

Remove unsafe serialization from PayloadUtil.
Remove the class WorkBundle from the list of
serializable classes, remove some classes like
MoveToAction and MoveToAdapter. Replace
the ObjectInputStream by DataInputStream
(https://github.com/NationalSecurityAgency/
emissary/security/advisories/GHSA-m5qf-gfmp-
7638

X

https://github.com/apache/camel/tree/main/components/camel-netty
https://github.com/apache/camel/tree/main/components/camel-netty
https://github.com/apache/camel/tree/main/components/camel-netty
https://github.com/apache/camel/pull/3537
https://github.com/apache/camel/pull/3537
https://github.com/apache/camel
https://github.com/apache/camel
https://github.com/zregvart/camel/commit/c15ed20d92b5c920e9e55fe584f8e412b23f14f6
https://github.com/zregvart/camel/commit/c15ed20d92b5c920e9e55fe584f8e412b23f14f6
https://github.com/NationalSecurityAgency/emissary
https://github.com/NationalSecurityAgency/emissary
https://github.com/NationalSecurityAgency/emissary
https://github.com/NationalSecurityAgency/emissary/security/advisories/GHSA-m5qf-gfmp-7638
https://github.com/NationalSecurityAgency/emissary/security/advisories/GHSA-m5qf-gfmp-7638
https://github.com/NationalSecurityAgency/emissary/security/advisories/GHSA-m5qf-gfmp-7638

42
Im

en
Sayar,A

lexandre
B
artel,Eric

B
odden,and

Yves
Le

Traon
Apache Dubbo
prior to 2.6.9
and 2.7.9

CVE-2021-
30179

https://github.com/apache/
dubbo

Apache Dubbo by default supports
generic calls to arbitrary methods
exposed by provider interfaces. These
invocations are handled by the
GenericFilter which will find the
service and method specified in the
first arguments of the invocation
and use the Java Reflection API to
make the final call. The signature
for the invoke or invokeAsync
methods is Ljava/lang/String;-
[Ljava/lang/String;[Ljava/lang-
/Object; where the first argument
is the name of the method to invoke,
the second one is an array with the
parameter types for the method being
invoked and the third one is an array
with the actual call arguments

Native Java deserialization will not be acti-
vated defaultly. If user still wants use it, set
dubbo.security.serialize.generic.nati-
ve-java-enable as true in environment. An
embedded serialization block list is introduced
in dubbo-common/src/main/resources/secu-
rity/serialize.blockedlist. (see https:
//github.com/apache/dubbo/releases/tag/dubbo-
2.7.10)

X

Apache
OFBiz

CVE-2021-
29200

https://github.com/apache/
ofbiz-framework

An unauthenticated user can perform
an RCE attack

Update UtilObject class. Restrict unau-
thorized deserialisations to java.rmi in-
stead of java.rmi.server. (patch in https:
//issues.apache.org/jira/browse/OFBIZ-12216
and https://gitbox.apache.org/repos/asf?p=ofbiz-
framework.git;h=1bc8a20)

X

CVE-2021-
26295

https://github.com/apache/
ofbiz-framework

An unauthenticated attacker can use
this vulnerability to successfully take
over Apache OFBiz

The code fix is to "blacklist" RMI server to
prevent it from being exploited. (see https:
//issues.apache.org/jira/browse/OFBIZ-12167
and https://lists.apache.org/thread.html/r0d97-
a3b7a14777b9e9e085b483629d2774343c4723-
236d1c73f43ff0@%3Cdev.ofbiz.apache.org%3E

X

McAfee
Data-
base
Se-
cu-
rity
(DB-
Sec)
<

4.8.2

CVE-2021-
23895

No A remote authenticated attacker can
create a reverse shell with administra-
tor privileges on the DBSec server via
carefully constructed Java serialized
object sent to the DBSec server

Unknown patch X

https://github.com/apache/dubbo
https://github.com/apache/dubbo
https://github.com/apache/dubbo/releases/tag/dubbo-2.7.10
https://github.com/apache/dubbo/releases/tag/dubbo-2.7.10
https://github.com/apache/dubbo/releases/tag/dubbo-2.7.10
https://github.com/apache/ofbiz-framework
https://github.com/apache/ofbiz-framework
https://issues.apache.org/jira/browse/OFBIZ-12216
https://issues.apache.org/jira/browse/OFBIZ-12216
https://gitbox.apache.org/repos/asf?p=ofbiz-framework.git;h=1bc8a20
https://gitbox.apache.org/repos/asf?p=ofbiz-framework.git;h=1bc8a20
https://github.com/apache/ofbiz-framework
https://github.com/apache/ofbiz-framework
https://issues.apache.org/jira/browse/OFBIZ-12167
https://issues.apache.org/jira/browse/OFBIZ-12167
https://lists.apache.org/thread.html/r0d97a3b7a14777b9e9e085b483629d2774343c4723236d1c73f43ff0@%3Cdev.ofbiz.apache.org%3E
https://lists.apache.org/thread.html/r0d97a3b7a14777b9e9e085b483629d2774343c4723236d1c73f43ff0@%3Cdev.ofbiz.apache.org%3E
https://lists.apache.org/thread.html/r0d97a3b7a14777b9e9e085b483629d2774343c4723236d1c73f43ff0@%3Cdev.ofbiz.apache.org%3E

A
n
In-depth

Study
ofJava

D
eserialization

R
em

ote-C
ode

Execution
Exploits

and
V
ulnerabilities

43

CVE-2021-
23894

No A remote unauthenticated attacker can
create a reverse shell with administra-
tor privileges on the DBSec server via
carefully constructed Java serialized
object sent to the DBSec server.

Unknown patch X

Table 5. 29 studied CVEs and applied patches. The first column designates the name of the studied vulnerable application; the column "CVE" mentions the
CVE ID associated to the vulnerability; the third column "Code availability" indicates if the source code or the binary files are available: if yes, we give the URL
for this code, otherwise we put "No"; the description of each vulnerability is presented in the fourth column; patching or workaround actions are described in
the column "Applied patch"; the last three columns desingate the category of the vulnerability at hand: GA for GAdgets, DV for Deserialization Vulnerabilities
and UC for Untrusted Code. The rows having UC as category are colored in gray because they are not in our scope of study in this article. Note that the
complete table, with 104 CVEs, is available at https://github.com/software-engineering-and-security/java-deserialization-rce

https://github.com/software-engineering-and-security/java-deserialization-rce

44
Im

en
Sayar,A

lexandre
B
artel,Eric

B
odden,and

Yves
Le

Traon

Appendix B Pre-processing for use of filters

Attack name (De)Serialized types Is the first object to deserialize
in external library type (Y/N)?

BeanShell1 PriorityQueue<E> (containing an int and an
XThis$Handler), E is an Integer, This, BshMethod

N

Clojure HashMap<K,V> (containing int and float), K is an Abstract-
TableModel$ff19274a

N

CommonsBeanUtils1 PriorityQueue<E> (containing an int and a
BeanComparator<T> (in which T is a TemplatesImpl), E is
a TemplatesImpl

N

CommonsCollections1 AnnotationInvocationHandler (containing Class<? extends
Annotation>, Map<String, Object> which is a LazyMap
containing ChainedTransformer and a HashMap)), Invoker-
Transformer

N

CommonsCollections2 PriorityQueue<E> (containing int, TransformingCompara-
tor), E is a TemplatesImpl, InvokerTransformer

N

CommonsCollections3 AnnotationInvocationHandler, InstantiateTransformer,
TemplatesImpl

N

CommonsCollections4 PriorityQueue<E> (containing int, TransformingCompara-
tor), E is an Integer, ChainedTransformer, InstantiateTrans-
former and TemplatesImpl

N

CommonsCollections5 BadAttributeValueExpException (containing Object (which
is a String)), TiedMapEntry, LazyMap, ChainedTransformer,
InvokerTransformer

N

CommonsCollections6 HashSet<E> (containing an Object), E is a TiedMapEntry,
LazyMap, ChainedTransformer, InvokerTransformer

CommonsCollections7 HashTable<K,V> (containing int and float), K is a LazyMap
and V is an Integer, ChainedTransformer, InvokerTrans-
former

N

Groovy1 AnnotationInvocationHandler (containing a ConvertedClo-
sure and Class<T>), ConversionHandler, Closure<V>

N

A
n
In-depth

Study
ofJava

D
eserialization

R
em

ote-C
ode

Execution
Exploits

and
V
ulnerabilities

45
ROME HashMap<K,V> (containing int, float, ObjectBean), Equals-

Bean, ToStringBean, TemplatesImpl
N

MozillaRhino1 BadAttributeValueExpException (containing an Object
which is a String), ScriptableObject, TemplatesImpl

N

MozillaRhino2 NativeJavaObject (containing
org.mozilla.javascript.tools.shell.Environment, Script-
able interface), ScriptableObject, NativeJavaObject,
MemberBox, TemplatesImpl

Y (class in js-1.7-R2)

Spring1 SerializableTypeWrapper$MethodInvokeTypeProvider (con-
taining TypeProvider (which is a TemplatesImpl), String
and int)

Y (in spring-core library)

Spring2 SerializableTypeWrapper$MethodInvokeTypeProvider (con-
taining String, int and TypeProvider (which is a Templates-
Impl)), JdkDynamicAopProxy

Y (in spring-core library)

Click1 PriorityQueue<E> (containing int, Col-
umn$ColumnComparator), E is a TemplatesImpl, Column

N

Vaadin1 BadAttributeValueExpException (containing an Object
which is a String), TemplatesImpl

N

JDK7U21 LinkedHashSet<E> (HashSet<E>) (containing Object), E is
a TemplatesImpl, HashMap<K,V>, AnnotationInvocation-
Handler

N

Table 6. Types extracted from known attacks

46
Im

en
Sayar,A

lexandre
B
artel,Eric

B
odden,and

Yves
Le

Traon
Application name Deserialized types
Apache-wicket (6.24.0) String, ObjectInputStream, ReplaceObjectInputStream (containing

HashMap<String, Component> (), ClassLoader (containing boolean, Hashtable,
Certificate[], Vector, HashMap, Set, URLClassPath)), List<Serializable>,
Map<String, SessionEntry> (for SessionEntry, there are String, boolean,
PageWindowManager (containing PageWindowInternal (with int, long,
List<PageWindowInternal>, IntHashMap<Integer> (containing int and
float)))), InputStream (containing int, byte[]), V, E, Url (containing List<String>,
long, Integer, String, List<QueryParameter> (QueryParameter contains
String)), Serializable

Apache storm 1.2.2 ObjectInputStream, ClassLoaderObjectInputStream, KerberosTicket (contain-
ing int, byte[], boolean[], Date, KeyImpl (containing transient variables =>
not considered), KerberosPrincipal (containing int and char), InetAddress[]
(containing int, List<NameService>)), Kryo (but this class does not implement
java.io.Serializable)

Apache-ofbiz-16.11.05 ObjectInputStream, String, ByteArrayInputStream (containing byte and int),
Thread

Atlassian-bamboo-5.9.7 ObjectInputStream, E, Hashing<K>, Equiv<K>, K, V, ClassTag (which is an
interface) and A

Apache-xmlrpc-3.1.3 Throwable (containing String, StackTraceElement[], StackTraceElement,
List<Throwable>, and Throwable), ObjectInputStream

Gradle-enterprise-
maven-extension-1.5.3

AuthScheme (which is an interface), TestListenerEvent (containing long and
TestDescriptor (with Long and String))

A
n
In-depth

Study
ofJava

D
eserialization

R
em

ote-C
ode

Execution
Exploits

and
V
ulnerabilities

47
Apache Chainsaw LoggingEvent (containing long, String, Hashtable(with int, float,

sun.misc.Unsafe), boolean, ThrowableInformation (containing String[]),
LocationInfo (containing String, Method, StringWriter (containing String-
Buffer), PrintWriter (containing Writer (containing char[], int, Object), boolean,
Formatter (containing Appendable (chich is an interface), Locale (containing
Cache, char, int and Locale), IOException, char, double, int), PrintStream
(containing boolean, Formatter, BufferedWriter (containing Writer (containing
char[], int, Object), char, int, String), OutputStreamWriter (containing
StreamEncoder)), String), boolean,Map<K,V>, LogPanelPreferenceModel
(containing String, Collection, ArrayList, boolean), ObjectInputStream, Point
(containing int), Dimension (containing int), Vector (Object[], int)

Jackson-databind-
2.9.10.6

ObjectIdReader (containing JavaType (which an abstract class contan-
ing Class<?>, Object, int and boolean), PropertyName (containing
long, String, PropertyName, SerializableString (which is an inter-
face)), ObjectIdGenerator<?>, ObjectIdResolver (which is an interface),
JsonDeserializer<Object> (which is an abstract class), SettableBeanProp-
erty (containing JsonDeserializer<Object>, PropertyName, JavaType,
JsonDeserializer<Object>, TypeDeserializer (which is an abstract class),
NullValueProvider (which is an interface))

Opennms-source-26.0.1-1 TrapInformation, T, OnmsCriteria, SerializedBatch, OnmsSeverity (containing
Map<Integer, OnmsSeverity>, int, String)

TeamCity-2019.1.3 ObjectInputStream, Serializable, Principal (which is an interface), String[]
Table 7. Serialized and deserialized types extracted from vulnerable real-world applications

48
Im

en
Sayar,A

lexandre
B
artel,Eric

B
odden,and

Yves
Le

Traon

Appendix C Analysis of commits

Application CVE Open source? (Y/N) Internal/External patch? Automatically/manually generated
patch?

Taoensso Nippy <

2.14.2
CVE-2020-24164 Y https://github.com/ptaoussanis/

nippy
Internal patch Manually generated patch (see Nippy

commit and http://ptaoussanis.github.io/
nippy/taoensso.nippy.html#var-allow-
and-record-any-serializable-class-unsafe)

Jboss RichFaces
(Jboss-RF) 3.x <=

3.3.3 and 4.x <=

4.3.2

CVE-2013-2165 Y https://richfaces.jboss.org/
download/archive.html

Internal patch https://www.bleathem.ca/
blog/richfaces-security-advisory-
cve-2013-2165/ and https://
codewhitesec.blogspot.com/2018/05/poor-
richfaces.html

Manually generated patch (see Jboss Rich-
faces commit)

Android < 5.0.0 CVE-2014-7911 Y https://android.googlesour-
ce.com/?format=HTML

Internal patch (see android libcore commit) Manually generated patch (see Android
commit)

Atlassian Bamboo
before 5.9.9 and
5.10.x before 5.10.0

CVE-2014-9757 Y https://www.atlassian.com/
software/bamboo/download-
archives

External (the patched version Bamboo
5.10.0 uses an updated version of the smack
library in which a lot of modifications are
brought)

-

Jenkins < 1.638
and LTS < 1.625.2

CVE-2015-8103 Y https://github.com/jenkinsci/
jenkins https://wiki.jenkins.io/
display/JENKINS/Jenkins+CLI

Unknown patch -

VMware vRealize
Orchestrator 6.x,
vCenter Orches-
trator 5.x, vRealize
Operations 6.x,
vCenter Oper-
ations 5.x, and
vCenter Applica-
tion Discovery
Manager (vADM)
7.x

CVE-2015-6934 Y https://docs.vmware.com/en/
vRealize-Orchestrator/7.6/rn/
VMware-vRealize-Orchestrator-76-
Release-Notes.html

External patch (replace the Commons
collections library by the commons-
collections-3.2.2.jar in the dependencies
of the mentioned products (see https:
//kb.vmware.com/s/article/2141244 and
https://kb.vmware.com/s/article/2141244)

-

Hazelcast < 3.11 CVE-2016-10750 Y https://github.com/hazelcast/
hazelcast

Internal patch (see https://
docs.hazelcast.org/docs/3.10.5/manual/
html-single/index.html#untrusted-
deserialization-protection)

Unknown

https://github.com/ptaoussanis/nippy
https://github.com/ptaoussanis/nippy
https://github.com/ptaoussanis/nippy/commit/61fb009fdde2994140f2da2e495ba8af3a873eb2
https://github.com/ptaoussanis/nippy/commit/61fb009fdde2994140f2da2e495ba8af3a873eb2
http://ptaoussanis.github.io/nippy/taoensso.nippy.html#var-allow-and-record-any-serializable-class-unsafe
http://ptaoussanis.github.io/nippy/taoensso.nippy.html#var-allow-and-record-any-serializable-class-unsafe
http://ptaoussanis.github.io/nippy/taoensso.nippy.html#var-allow-and-record-any-serializable-class-unsafe
https://richfaces.jboss.org/download/archive.html
https://richfaces.jboss.org/download/archive.html
https://www.bleathem.ca/blog/richfaces-security-advisory-cve-2013-2165/
https://www.bleathem.ca/blog/richfaces-security-advisory-cve-2013-2165/
https://www.bleathem.ca/blog/richfaces-security-advisory-cve-2013-2165/
https://codewhitesec.blogspot.com/2018/05/poor-richfaces.html
https://codewhitesec.blogspot.com/2018/05/poor-richfaces.html
https://codewhitesec.blogspot.com/2018/05/poor-richfaces.html
https://github.com/richfaces4/core/commit/12ee1166f04806b3ba072d27f9a9b3b3feae2ec9
https://github.com/richfaces4/core/commit/12ee1166f04806b3ba072d27f9a9b3b3feae2ec9
https://android.googlesource.com/?format=HTML
https://android.googlesource.com/?format=HTML
https://android.googlesource.com/platform/libcore/+/738c833d38d41f8f76eb7e77ab39add82b1ae1e2
https://android-review.googlesource.com/c/platform/libcore/+/101525
https://android-review.googlesource.com/c/platform/libcore/+/101525
https://www.atlassian.com/software/bamboo/download-archives
https://www.atlassian.com/software/bamboo/download-archives
https://www.atlassian.com/software/bamboo/download-archives
https://github.com/jenkinsci/jenkins
https://github.com/jenkinsci/jenkins
https://wiki.jenkins.io/display/JENKINS/Jenkins+CLI
https://wiki.jenkins.io/display/JENKINS/Jenkins+CLI
https://docs.vmware.com/en/vRealize-Orchestrator/7.6/rn/VMware-vRealize-Orchestrator-76-Release-Notes.html
https://docs.vmware.com/en/vRealize-Orchestrator/7.6/rn/VMware-vRealize-Orchestrator-76-Release-Notes.html
https://docs.vmware.com/en/vRealize-Orchestrator/7.6/rn/VMware-vRealize-Orchestrator-76-Release-Notes.html
https://docs.vmware.com/en/vRealize-Orchestrator/7.6/rn/VMware-vRealize-Orchestrator-76-Release-Notes.html
https://kb.vmware.com/s/article/2141244
https://kb.vmware.com/s/article/2141244
https://kb.vmware.com/s/article/2141244
https://github.com/hazelcast/hazelcast
https://github.com/hazelcast/hazelcast
https://docs.hazelcast.org/docs/3.10.5/manual/html-single/index.html#untrusted-deserialization-protection
https://docs.hazelcast.org/docs/3.10.5/manual/html-single/index.html#untrusted-deserialization-protection
https://docs.hazelcast.org/docs/3.10.5/manual/html-single/index.html#untrusted-deserialization-protection
https://docs.hazelcast.org/docs/3.10.5/manual/html-single/index.html#untrusted-deserialization-protection

A
n
In-depth

Study
ofJava

D
eserialization

R
em

ote-C
ode

Execution
Exploits

and
V
ulnerabilities

49
Apache OFBiz
12.04.x < 12.04.06
and 13.07.x <

13.07.03

CVE-2016-2170 Y http://archive.apache.org/dist/
ofbiz/

External patch (Update commons collec-
tions to 4.1 and Comment out RMI related
code (see https://issues.apache.org/jira/
browse/OFBIZ-6942, https://markmail.org/
message/nh6csf4fun5n6e23 and https:
//issues.apache.org/jira/browse/OFBIZ-
6726)

-

Apache XML-RPC
(aka ws-xmlrpc) li-
brary 3.1.3

CVE-2016-5003 Y https://archive.apache.org/dist/ws/
xmlrpc/sources/

Internal patch Manually generated patch (see XML-RPC
commit)

ApacheWicket 6.x
< 6.25.0 and 1.5.x
< 1.5.17

CVE-2016-6793 Y https://archive.apache.org/dist/
wicket/

Internal patch (obtained by doing the diff
betwwen the 6.24.0 and 6.25.0 versions)

Manually generated patch (see wicket com-
mit Announcing CVE-2016-6793: Apache
Wicket deserialization vulnerability)

Red Hat JBoss
Enterprise Appli-
cation Platform
(Jboss-EAP) 4 and
5

CVE-2016-7065 Y https://developers.redhat.com/
products/eap/download

Red Hat does not fix the issue because JBoss
EAP 4 is out of maintenance support and
JBoss EAP 5 is close to the end of its main-
tenance period (see https://seclists.org/
fulldisclosure/2016/Nov/143 and https://
seclists.org/fulldisclosure/2016/Nov/143)

-

Log4j CVE-2019-17571 Y https://github.com/apache/log4j Internal Manually generated patch (see log4j com-
mit)

JetBrains TeamC-
ity before 2019.1.4

CVE-2019-18364 Y https://www.jetbrains.com/fr-fr/
teamcity/download/other.html

Unknown patch -

Apache Dubbo
2.7.0 before 2.7.5,
2.6.0 before 2.6.8,
and 2.5.x versions

CVE-2019-17564 Y https://github.com/apache/dubbo Internal Manually generated patch (see Dubbo com-
mit and https://github.com/apache/dubbo/
releases/tag/dubbo-2.7.5)

WebSphere Ap-
plication Server
(WAS) Com-
munity Edition
3.0.0.3

CVE-2013-1777 Y http://geronimo.apache.org/
downloads.html

Internal patch http://svn.apache.org/
viewvc?view=revision&sortby=
date&revision=1458113

Manually generated patch (http:
//svn.apache.org/viewvc?view=

revision&sortby=date&revision=1458113)

Apache Ofbiz
from 16.11.01 to
16.11.05

CVE-2019-0189 Y https://archive.apache.org/dist/
ofbiz/

Internal Manually generated patch (see Ofbiz com-
mit)

Apache Tomcat CVE-2020-9484 Y https://github.com/apache/tomcat Internal Manually generated patch (see Tomcat com-
mit

http://archive.apache.org/dist/ofbiz/
http://archive.apache.org/dist/ofbiz/
https://issues.apache.org/jira/browse/OFBIZ-6942
https://issues.apache.org/jira/browse/OFBIZ-6942
https://markmail.org/message/nh6csf4fun5n6e23
https://markmail.org/message/nh6csf4fun5n6e23
https://issues.apache.org/jira/browse/OFBIZ-6726
https://issues.apache.org/jira/browse/OFBIZ-6726
https://issues.apache.org/jira/browse/OFBIZ-6726
https://archive.apache.org/dist/ws/xmlrpc/sources/
https://archive.apache.org/dist/ws/xmlrpc/sources/
https://src.fedoraproject.org/rpms/xmlrpc/c/ef4efbf91d241070f6f41950f7536049688a3a67?branch=master
https://src.fedoraproject.org/rpms/xmlrpc/c/ef4efbf91d241070f6f41950f7536049688a3a67?branch=master
https://archive.apache.org/dist/wicket/
https://archive.apache.org/dist/wicket/
https://github.com/apache/wicket/commit/134686ef7185d3f96fec953136ab4847cd36b68
https://github.com/apache/wicket/commit/134686ef7185d3f96fec953136ab4847cd36b68
https://github.com/apache/wicket-site/commit/c202a1f616f460643bf82441480946e3f689f884
https://github.com/apache/wicket-site/commit/c202a1f616f460643bf82441480946e3f689f884
https://developers.redhat.com/products/eap/download
https://developers.redhat.com/products/eap/download
https://seclists.org/fulldisclosure/2016/Nov/143
https://seclists.org/fulldisclosure/2016/Nov/143
https://seclists.org/fulldisclosure/2016/Nov/143
https://seclists.org/fulldisclosure/2016/Nov/143
https://github.com/apache/log4j
https://github.com/apache/logging-log4j2/commit/5dcc19215827db29c993d0305ee2b0d8dd05939d
https://github.com/apache/logging-log4j2/commit/5dcc19215827db29c993d0305ee2b0d8dd05939d
https://www.jetbrains.com/fr-fr/teamcity/download/other.html
https://www.jetbrains.com/fr-fr/teamcity/download/other.html
https://github.com/apache/dubbo
https://github.com/apache/dubbo/commit/9b18fe228971eaeca9b87d7b7e95df1c2a8ff91b
https://github.com/apache/dubbo/commit/9b18fe228971eaeca9b87d7b7e95df1c2a8ff91b
https://github.com/apache/dubbo/releases/tag/dubbo-2.7.5
https://github.com/apache/dubbo/releases/tag/dubbo-2.7.5
http://geronimo.apache.org/downloads.html
http://geronimo.apache.org/downloads.html
http://svn.apache.org/viewvc?view=revision&sortby=date&revision=1458113
http://svn.apache.org/viewvc?view=revision&sortby=date&revision=1458113
http://svn.apache.org/viewvc?view=revision&sortby=date&revision=1458113
http://svn.apache.org/viewvc?view=revision&sortby=date&revision=1458113
http://svn.apache.org/viewvc?view=revision&sortby=date&revision=1458113
http://svn.apache.org/viewvc?view=revision&sortby=date&revision=1458113
https://archive.apache.org/dist/ofbiz/
https://archive.apache.org/dist/ofbiz/
https://github.com/apache/ofbiz-framework/commit/40c971275a743bcbad6a5384fd2c9cbfd6e80239
https://github.com/apache/ofbiz-framework/commit/40c971275a743bcbad6a5384fd2c9cbfd6e80239
https://github.com/apache/tomcat
https://github.com/apache/tomcat/commit/bb33048e3f9b4f2b70e4da2e6c4e34ca89023b1b#diff-d2801d6b9c9ff6f98a6871accb7e61499ed3899f5234028997387ad65906e5e7
https://github.com/apache/tomcat/commit/bb33048e3f9b4f2b70e4da2e6c4e34ca89023b1b#diff-d2801d6b9c9ff6f98a6871accb7e61499ed3899f5234028997387ad65906e5e7

50
Im

en
Sayar,A

lexandre
B
artel,Eric

B
odden,and

Yves
Le

Traon
OpenNMS Hori-
zon < 26.0.1 and
Meridian before
2018.1.19 and 2019
before 2019.1.7

CVE-2020-12760 Y https://github.com/OpenNMS/
opennms/releases/tag/opennms-
26.0.1-1

External patch (see https://github.com/
OpenNMS/opennms/pull/2983)

-

Apache Tapestry 4 CVE-2020-17531 Y https://github.com/apache/
tapestry4

No available patch (Apache Tapestry 4
reached end of life in 2008 and no up-
date to address this issue is released (the
upgrade to the latest Apache Tapestry
5 version is necessary) (see Tapestry 4
message) and https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2020-17531)

-

Apache Camel
Netty (Camel-
Netty)

CVE-2020-11973 Y https://github.com/apache/camel/
tree/main/components/camel-netty

Internal Manually generated patch (see Camel Netty
commit)

Apache Camel
RabbitMQ (Camel-
RabbitMQ) 2.22.x,
2.23.x, 2.24.x,
2.25.0, 3.0.0 up to
3.1.0

CVE-2020-11972 Y https://github.com/apache/camel Internal patch (see RabbitMQ patch) Manually generated patch (see Camel com-
mit)

Emissary 6.4.0 CVE-2021-32634 Y https://github.com/
NationalSecurityAgency/emissary

Internal patch (https://github.com/
NationalSecurityAgency/emissary/
security/advisories/GHSA-m5qf-gfmp-
7638)

Manually generated patch (see emissary
commit)

Apache Dubbo
prior to 2.6.9 and
2.7.9

CVE-2021-30179 Y https://github.com/apache/dubbo Internal patch (see https://github.com/
apache/dubbo/releases/tag/dubbo-2.7.10)

Manually generated patch (see dubbo com-
mit and https://github.com/apache/dubbo/
pull/7436)

Soffid IAM < 1.7.5 CVE-2017-9363 Y https://github.com/SoffidIAM/
console

Internal patch Manually generated patch (see SoffidIam
commit)

Apache OFBiz CVE-2021-29200 Y https://github.com/apache/ofbiz-
framework

Internal Manually generated patch (see Ofbiz com-
mit)

CVE-2021-26295 Y https://github.com/apache/ofbiz-
framework

Internal Manually generated patch (see https:
//issues.apache.org/jira/browse/OFBIZ-
12167 and Ofbiz commit)

https://github.com/OpenNMS/opennms/releases/tag/opennms-26.0.1-1
https://github.com/OpenNMS/opennms/releases/tag/opennms-26.0.1-1
https://github.com/OpenNMS/opennms/releases/tag/opennms-26.0.1-1
https://github.com/OpenNMS/opennms/pull/2983
https://github.com/OpenNMS/opennms/pull/2983
https://github.com/apache/tapestry4
https://github.com/apache/tapestry4
https://lists.apache.org/thread/mcl3xzw50vjb7rv76nsgq5zorhbg5gyy
https://lists.apache.org/thread/mcl3xzw50vjb7rv76nsgq5zorhbg5gyy
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-17531
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-17531
https://github.com/apache/camel/tree/main/components/camel-netty
https://github.com/apache/camel/tree/main/components/camel-netty
https://github.com/apache/camel/pull/3537/commits/58aff9f9cd4aab3163b8eda8281cb795cb3b59c8
https://github.com/apache/camel/pull/3537/commits/58aff9f9cd4aab3163b8eda8281cb795cb3b59c8
https://github.com/apache/camel
https://github.com/zregvart/camel/commit/c15ed20d92b5c920e9e55fe584f8e412b23f14f6
https://github.com/apache/camel/pull/3633
https://github.com/apache/camel/pull/3633
https://github.com/NationalSecurityAgency/emissary
https://github.com/NationalSecurityAgency/emissary
https://github.com/NationalSecurityAgency/emissary/security/advisories/GHSA-m5qf-gfmp-7638
https://github.com/NationalSecurityAgency/emissary/security/advisories/GHSA-m5qf-gfmp-7638
https://github.com/NationalSecurityAgency/emissary/security/advisories/GHSA-m5qf-gfmp-7638
https://github.com/NationalSecurityAgency/emissary/security/advisories/GHSA-m5qf-gfmp-7638
https://github.com/NationalSecurityAgency/emissary/commit/40260b1ec1f76cc92361702cc14fa1e4388e19d7
https://github.com/NationalSecurityAgency/emissary/commit/40260b1ec1f76cc92361702cc14fa1e4388e19d7
https://github.com/apache/dubbo
https://github.com/apache/dubbo/releases/tag/dubbo-2.7.10
https://github.com/apache/dubbo/releases/tag/dubbo-2.7.10
https://github.com/apache/dubbo/pull/7436/commits/390c80a502dc7c2c6f29d544639760bcd2dc54fb
https://github.com/apache/dubbo/pull/7436/commits/390c80a502dc7c2c6f29d544639760bcd2dc54fb
https://github.com/apache/dubbo/pull/7436
https://github.com/apache/dubbo/pull/7436
https://github.com/SoffidIAM/console
https://github.com/SoffidIAM/console
https://github.com/SoffidIAM/console/commit/8e9e7c9e537acfc2a245fbbeb41a143b5b4f7230#diff-544c1cb1ac64f2f62b6b326bd0b1b6addc17f19416878d319d3643e302a043b7
https://github.com/SoffidIAM/console/commit/8e9e7c9e537acfc2a245fbbeb41a143b5b4f7230#diff-544c1cb1ac64f2f62b6b326bd0b1b6addc17f19416878d319d3643e302a043b7
https://github.com/apache/ofbiz-framework
https://github.com/apache/ofbiz-framework
https://github.com/apache/ofbiz-framework/commit/1bc8a206346f251c9076c2fb9babc896ba6bdf0d
https://github.com/apache/ofbiz-framework/commit/1bc8a206346f251c9076c2fb9babc896ba6bdf0d
https://github.com/apache/ofbiz-framework
https://github.com/apache/ofbiz-framework
https://issues.apache.org/jira/browse/OFBIZ-12167
https://issues.apache.org/jira/browse/OFBIZ-12167
https://issues.apache.org/jira/browse/OFBIZ-12167
https://github.com/apache/ofbiz-plugins/commit/a3438121d8f50545b3a5c397c589fe97ca33202b

A
n
In-depth

Study
ofJava

D
eserialization

R
em

ote-C
ode

Execution
Exploits

and
V
ulnerabilities

51
Table 8. Analysis of the patches of 25 open source vulnerable applications. In this table, the fourth column "Internal/External patch?" describes if the
patch concerns the code of the application itself (Internal) or the code of the libraries used in the concerned application (External). The fifth column
"Automatically/manually generated patch?" indicates if the patch was manually generated or automatically generated by tools like Snyk [22, 63]. For each
existing patch, we give the link to the commit in which is described the patch. For the applications for which we do not find commit for patch, we use the
keyword "Unknown" in the last column. For the applications that do not have a patch, we put the "-" symbol.

	Abstract
	1 Introduction
	2 Background
	2.1 Terminology
	2.2 Overview of Typical Deserialization Attacks
	2.3 A Concrete Real-World Example

	3 Experimentation and Evaluation
	3.1 Methodology
	3.2 Experimental Evaluation

	4 Synthesis and Take-away Messages
	4.1 Persistent deserialization of untrusted data
	4.2 Disable Serializable
	4.3 Library use frequency vs. duration of finding patches
	4.4 Definition of deserialization vulnerabilities in CVEs
	4.5 Gadgets inspection

	5 Limitations
	5.1 Scope of our study
	5.2 Source code accessibility
	5.3 CVEs keyword-based search precision

	6 Related work
	6.1 Deserialization vulnerabilities
	6.2 Java Security

	7 Conclusion
	References
	A Vulnerable applications and their patches
	B Pre-processing for use of filters
	C Analysis of commits

