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Memory corruption vulnerabilities still allow compromising computers through software written in a memory-
unsafe language such as C/C++. This highlights that mitigation techniques to prevent such exploitations
are not all widely deployed. In this paper, we introduce SEECFI, a tool to detect the presence of a memory
corruption mitigation technique called control flow integrity (CFI). We leverage SEECFI to investigate to
what extent the mitigation has been deployed in complex software systems such as Android and specific
Linux distributions (Ubuntu and Debian). Our results indicate that the overall adoption of CFI (forward- and
backward-edge) is increasing across Android versions (~30% in Android 13) but remains the same low (<1%)
throughout different Linux versions. Our tool, SEECFI, offers the possibility to identify which binaries in a
system were compiled using the CFI option. This can be deployed by external security researchers to efficiently
decide which binaries to prioritize when fixing vulnerabilities and how to fix them. Therefore, SEECFI can
help to make software systems more secure.

CCS Concepts: » Security and privacy — Operating systems security.

Additional Key Words and Phrases: static analysis, memory corruption vulnerabilities, mitigation techniques,
CFI, software maintenance

1 INTRODUCTION

Memory corruption vulnerabilities are still among the most critical software bugs. They exist since
memory-unsafe programming languages such as C/C++ are still commonly used to write code for
highly used software such as web browsers or device drivers. These vulnerabilities include buffer
and integer [24] overflows — and, more generally, all out-of-bound accesses —, uninitialized memory,
type confusion, and use-after-free. We illustrate how attackers could leverage such vulnerabilities
to execute arbitrary code through two cases. The first is CVE-2023-2731 [12, 40], a vulnerability in
the 1ibxml2 library, a widely used XML parsing library in various software applications across
many operating systems, including Ubuntu and Debian. The issue lies in the handling of XML
documents during the parsing process. When the library attempts to free or deallocate memory that
has been incorrectly managed, it may overwrite adjacent memory areas on the heap. This can lead to
arbitrary code execution if an attacker can craft an XML document that exploits this overflow. This
vulnerability is particularly dangerous because it allows attackers to potentially execute malicious
code with the privileges of the application using 1ibxml2. The second is CVE-2022-20127 [39],
an out-of-bounds write due to a double free. This could lead to remote code execution with no
additional execution privileges needed and no user interaction required for exploitation. It affects
Android-10, Android-11, Android-12, and Android-12L and has a score of 10, the highest possible
score for a CVE. These two examples illustrate that while techniques have been developed to
prevent the exploitation of specific kinds of vulnerabilities, including out-of-bound writes [62], it
seems that not all of them have been optimized to be widely deployed.

One of the first memory corruption attacks described in the literature consists of smashing the
stack to change the control flow of the program [49]. The stack has been made non-executable
to prevent stack smashing attacks, and this technique is widely deployed [3]. However, a new
attack technique, Return-Oriented Programming (ROP) for leveraging gadgets, leveraging gadgets,
has been introduced to bypass this mitigation technique. The code is randomized in memory
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using another mitigation technique called ASLR [20, 50, 81] to prevent ROP attacks. It is a cat-and-
mouse game: new mitigation techniques must be implemented when new attack vectors are found.
However, not all mitigations are deployed. One potential cause could be the high-performance
impact, resulting in a negative user experience. Another cause could be that integration requires
human effort to update the software configuration to compile correctly, increasing the testing time
and, thus, the deployment time. More recent mitigation techniques, such as Control Flow Integrity
(CFI), aim at detecting and blocking the exploitation of vulnerabilities at runtime [2, 76]. The idea is
to inject additional code in binaries at compilation time. One of the aims of this additional code is to
check that branch targets are consistent. For instance, at the assembly level, a branching instruction
call rax, in the context of a virtual call on an Object A, can only call a method defined in class A
or a subclass. If an attacker has tampered with the value of register rax, the additional code will
detect and stop the program to prevent exploitation. This is also called forward-edge CFI, while
the protection of function returns is called backward-edge CFL. In practice, backward-edge CFI is
named ShadowCallStack.

Some mitigation techniques are easy to detect. For instance, a PIE (position-independent exe-
cutable) binary, similar to the ASLR mitigation technique, will have a specific flag in its header.
A non-executable stack is detected by checking the configuration at the operating system level.
However, there is no straightforward way to detect the presence of CFI in a binary. Indeed, CFI
is compiler-dependent and injects additional code within the binary at compilation time. Un-
fortunately, to the best of our knowledge, the compiler does not add any flag in the header of
the compiled binaries with CFI, leaving the detection of CFI to program analysis. In this paper,
we present SEECFI, which detects the presence of CFI within a binary. In particular, we focus
on detecting CFI injections for forward-edge virtual call protection and the general detection of
backward-edge CFI. SEECFI is the implementation of a generic approach detecting CFI. Nevertheless,
specific information on how a compiler injects CFI must be known well to accurately detect CFI
code chunks in a binary. Currently, SEECFI can statically analyze binaries compiled with Clang
and GCC, two of the main C/C++ compilers existing today. We leverage SEECFI to analyze native
Android, Samsung, GrapheneOS (an Android fork focusing on security and privacy), and the Linux
distributions Ubuntu and Debian to understand to what extent real-world state-of-the-art systems
implement and deploy CFI. Our contributions are the following:

(1) Implementation of SEECFI to detect whether a binary was compiled using forward- or
backward-edge CFL Our evaluation shows that SEECFI has a very low false positive (<0.004)
and false negative rate (<0.17). SEECFI is open-source and can be found at https://github.
com/software-engineering-and-security/SeeCFI.

(2) Ewvaluation of the adoption of forward- and backward-edge CFI enforcement throughout
different Android and Linux versions. Our results show that in Android, the deployment
of CFl is increasing even though it is, at this point, still low (~28.7%). On the other hand,
the deployment of CFI in Linux systems is almost nonexistent (<1%) and not increasing,
leaving the system vulnerable to control-flow hijacking attacks.

The remaining part of the paper is organized as follows. Section 2 presents the necessary information
regarding Control Flow Integrity. Then, in Section 3, we describe the approach to detecting CFI,
along with some technical details regarding SEECFI’s implementation. In Section 4, we give an
overview of our data collection and experimental setup. We present our results in Section 5 and
evaluate the performance of SEECFI, including a discussion giving explanations that connect to the
limitations of CFI described in Section 6. Related work is covered in Section 7. Finally, we conclude
and present future work in Section 8.
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2 BACKGROUND

Control Flow Integrity (CFI) was first introduced in 2005 in the initial paper by Abadi et al., which
was revised in 2009 [2]. However, there was no common and widely adoptable implementation for
almost one decade. Most custom implementations had too much overhead to be applicable [27]. In
2014, Tice et al. published the first integration into the production compilers GCC and LLVM [76].
CFI was introduced to protect low-level languages like C and C++ against memory corruption
vulnerabilities, allowing control-flow hijacking attacks. Attackers can exploit these vulnerabilities
(e.g., a buffer overflow or integer overflows [32]) to change the behavior of a program and even to
gain full control over the control flow of a program [68].

Buffer overflows occur when more data is written into a buffer than its actual length. In general, if
a non-maliciously triggered buffer overflow occurs, the program will either crash, wrongly execute,
or execute normally. However, attackers can exploit buffer overflow vulnerabilities to perform stack
smashing and heap smashing attacks depending on where the overwritten buffer is stored in
memory. Stack-based buffer overflow vulnerabilities are prominent targets for attacks. This enables
an attacker to compromise code, data, or the return address pointer, as is most common in attacks.
An attacker has different options to exploit this vulnerability, but most focus on overwriting the
return address pointer saved on the stack. If the stack is executable, an attacker can overwrite the
buffer with their own malicious code and set the return address pointer to the beginning of the
buffer. Another option is to overwrite the pointer with the address pointing to the malicious code,
which can be achieved by a code-reuse attack® or a ret2libc attack?. When the return address pointer
is overwritten with another address, the control flow will be redirected to this address instead of
returning as intended by design. Several techniques exist to prevent specific control-flow hijacking
attacks, and one of the most promising ones is Control Flow Integrity.

2.1 Control Flow Integrity

Control Flow Integrity (CFI) is intended to support or extend other security mechanisms, e.g., ASLR,
by verifying the targets of indirect function calls, jumps, and returns. There are two types of CFI:
(i) forward-edge enforcement concerning indirect function calls and jumps (Section 2.1.1), (ii) and
backward-edge dealing with the returns of previously performed function calls (Section 2.1.2). Even
though there are different implementations, the basic structure is always similar.

2.1.1 Forward-edge enforcement. It consists of two components. The first is to create a control
flow graph (CFG) of the program in question to identify the relevant parts of the code, done by a
static analysis approach. The compiler identifies indirect function calls, jumps, and all their possible
destinations. On the call site, it injects code responsible for verifying the branching instruction.
This means the pointer pointing to the call or jump target must be in the set of valid destinations.
If this check fails, the program crashes. As the second component of forward-edge CFI, the check
itself occurs at runtime through a dynamic enforcement mechanism. By that, the program’s control
flow is restricted according to the generated CFG.

Window’s compiler Visual Studio [37], GNU’s compiler GCC [31], and LLVM’s compiler Clang [71]
implement this process slightly differently. GCC’s and Clang’s implementations are both based on
Tice et al. [76]. Windows added the extension Control Flow Guard (CFG) in 2015 [37]. Android
has used one of Clang’s forward-edge implementations to protect its kernel code and parts of its
user-space components since 2018.

1 Code-reuse attacks involve exploiting vulnerabilities to reuse existing code in memory to perform malicious actions,
avoiding detection by security mechanisms.

Zret2libc is a type of code-reuse attack where an attacker redirects a program’s control flow to functions in the C standard
library (1ibc), often bypassing protections like non-executable memory.
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1 struct auth { <main>:

2 char p[AUTHMAX]; // pwd ;
3 void (*func)(struct authx); s
+ 3 call QWORD PTR [rbp-0x18] (= &auth) s
5

5
6 void success() { .
7 printf("Auth. ok.\n"); )
8}
9 (b)

void failure

° O f <main>:

1 printf("Auth. failed\n");
12 }

13

14 void auth(struct auth *a){
15 if (strcmp(a->p, "p") == 0)
16 a->func = &success;

1
2
3
mov rax, QWORD PTR [rbp-0x8] (= &auth) 4
movabs rcx, &typeid_auth 5
cmp rax, rcx 6
je check_passed 7

8

9

17 else 5
18 a->func = &failure; u
19 }
20 10
21 int main(int ac, char x*av){ check_passed: 1
22 struct auth a; call rax 2
23 a.func = &auth; 13
24 printf("Your pwd:\n"); y ) 14
25 scanf("%s", &a.pass); <.t)’pel _sut >: 15
26 a.func(&a); jmp &aut 1
27 } 17
(a) @)
Fig. 1. C-Program source code (a), assembly instructions without CFI (b), and assembly instructions with

forward-edge CFI (c)

Figure 1 illustrates the difference in assembly code when compiled with and without forward-
edge CFI; (a) displays the C source code of the compiled file, (b) illustrates the relevant parts of
the assembly code compiled without the CFI option, and (c) shows the corresponding assembly
code parts when compiled with forward-edge CFI. In line 26 (a) is the function’s call that needs to
be protected by CFL It needs protection as this is an indirect call, which is based on an address
and not a concrete value. Therefore, an attacker could tamper with this value, changing it to a
malicious destination. Line 4 in (b) shows this call in assembly without CFL The address to function
auth is stored in rbp-0x18. In illustration (c), we can see how the assembly code changes when
compiled with CFL In line 4, the address of function auth is loaded into register rax, and then the
address to the typeid of the function auth is moved into register rcx. The typeid of a function is
its signature, which is generated based on its return type and parameter types upon compilation.
Based on this signature, the compiler generates a set of valid call targets. In line 6, registers rax
and rcx are compared, meaning that the value of the register to be called (rax) is compared with
the validation value, the typeid (rcx). If the check passes, the program jumps from line 7 to line
12 to call the function auth. Otherwise, the program crashes by executing ud2 (line 8).

2.1.2  Backward-edge enforcement. Backward-edge protection aims to protect the return address
after returning from a previous function call. Moreover, it is less researched (fewer publications)
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than forward-edge. Windows introduced hardware-enforced stack protection [35] based on In-
tel’s Control-flow Enforcement Technology (CET) in 2019 as a compiler plugin. GCC’s [31] and
Clang’s [73] implementation is called ShadowCallStack and is currently only supported for aarch64.
When using ShadowCallStacks, a shadow stack is created in addition to the “regular” program stack.
The return address is then pushed on both stacks, and both values are compared when popped in the
function’s epilogue. If the values do not match, the program execution terminates or crashes [11].

LLVM removed the implementation of backward-edge CFI (ShadowCallStack) from version
9.0 onwards for x86_64 due to race-conditions enabled by return semantics [74]. These do not
affect aarch64 (arm64); thus, backward-edge CFI is currently only available for aarch64. The call-
return semantics of x86_64 must be changed to prevent the race condition [74]. However, that
would introduce an unacceptable performance overhead due to return branch predictions [74,
75]. Since Android is mainly deployed on aarch64-based devices, the runtime implementation of
ShadowCallStack was added to its 1ibc (bionic) [54] in 2019.

3 DETECTING CFI IN BINARIES

This section describes our approach to identifying forward- and backward-edge CFI, their imple-
mentations, and our test setup and data collection.

3.1 Approach

We used a manual approach to understand how LLVM’s CFI implementation works in practice. In
our approach, we only focus on indirect and virtual calls and assume that each binary contains at
least one. We compiled C and C++ files both with and without the CFI flag and then compared the
disassembled results.

Based on these findings, we implement the SEECFI tool, which serves the purpose of identifying
whether a binary was compiled using CFI. Furthermore, SEECFI returns whether the multi-module
CFI (cross-DSO), see Section 3.1.2, or single-module CFI option, described in Section 3.1.1, was used.
In addition to detecting the presence of forward-edge CFI, SEECFI can also determine whether the
binary deploys backward-edge CFI in the form of a ShadowCallStack. The tool is composed of two
main parts. The first one contains the forward-edge CFI detection, including the identification of
the option used, and the second one is the detection of backward-edge CFL

We perform the analysis on the binary level, as not all images are open-source; thus, only the
binaries are available. For instance, Samsung images and Pixel® images are closed-source. Therefore,
we use a MAKEFILEs- and BLUEPRINTs-based analysis approach to evaluate the performance of
SEECFI on AOSP only. Section 4.3 explains this approach in more detail.

3.1.1  Single-module CFI. Single-module CFI refers to the initial purpose of forward-edge CFI: to
protect virtual and indirect calls. This is implemented by adding checks before performing such a
call. The checks verify that the target of the call is in a set of predefined valid destination addresses.
The compiler defines this set by generating a CFG and identifying all functions with the same
signature as the call target. The signature is based on the return and argument types of a function.
The check is implemented as the function 11vm. type. test. This function checks that the function
to be called has the same type as the valid call targets, meaning the same return type and the same
parameter types. The check itself is performed during runtime; if the check fails, the execution
aborts using an ud or brk instruction. The check can directly compare the expected call destination
and the call target or indirectly with some calculations beforehand based on both values.

3The Pixel images are based on AOSP, which is open-source, but they also contain additional close-sourced binaries, e.g.,
related to the PlayStore.
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3.1.2  Multi-module CFI (cross-DSO). Multi-module CFI is an extension to the single-module CFI
implementation to support shared libraries. Dynamic Shared Objects (DSO) are object files used
simultaneously by multiple programs, reducing the necessity of duplicated code and thus decreasing
memory usage. It implements all policies of the single-module CFI with the addition that it applies
these across DSO boundaries. Multi-module CFI consists of two functions. The first is implemented
in each module (DSO), and the second is in a runtime support library. The function __cfi_check()
is injected into each DSO at compilation time. This function offers external modules CFI checks
to targets inside itself, as no outside function can determine which function calls are valid within
another DSO. The second function is called __cfi_slowpath() and resides within a shared library
such as 1ibdl. so in Android. It is responsible for finding the correct __cfi_check() function to
perform the CFI check triggered from another DSO.

3.1.3 Backward-edge CFI (ShadowCallStack). ShadowCallStack is LLVM’s implementation for the
aarch64 architecture, as explained in Section 2. It protects the return address of a function call
from overwrites by adding a check in the function’s epilogue before returning. For this purpose,
the return address is additionally stored on the ShadowCallStack, implemented in the function’s
prologue (str x18, <ret_addr>). Before returning, the return address and the address stored on
the ShadowCallStack (1dr <ret_addr>, x18) are compared. If they match, they pass the check,
and the function can return. Otherwise, the program crashes. Register x18 is treated as a special
case register and used as the shadow-call-stack-register.

3.2 Forward- & Backward-edge CFl Detection

This section explains the algorithms used in SEECFL In Section 3.2.1, we start by explaining the
detection of forward-edge CFI split into two algorithms. The first one detects multi-module CFI
(Algorithm 1), and the second one checks for single-module CFI (Algorithm 2). SEECFI only checks
for single-module CFI if it cannot detect multi-module CFIL. Then, in Section 3.2.2, we explain how
we detect the use of backward-edge CFL

3.2.1 Forward-edge CFl Detection. Firstly, Algorithm 1 validates whether multi-module CFI is used,
as this only requires checking the presence of the two functions mentioned before (__cfi_slowpath
and __cfi_check). The function __cfi_check must be present within the analyzed binary. It first
loads the binary to analyze using a binary analyzer framework. Then, the framework’s symbol
loader determines which of the CFI symbols (line 2) is present. Either the __cfi_check is part of
the analyzed binary, or both symbols are present to be verified as CFI enabled. If both symbols exist
(line 3), then the binary is compiled using the “cross-DSO” extension (line 4), and the algorithm
returns. If the symbols do not exist in the binary, Algorithm 2 is called (line 7).

Algorithm 1 Check the presence of multi-module CFI (cross-DSO)

1: procedure CHECK_MULTI_MODULE_CFI(binary)

2 symbols « proj.LOADER.FIND_SYMBOL(cfi_symbols)
3 if symbols then

4: multi_module_cfi < True

5 else

6 multi_module_cfi < False

7 CHECK_SINGLE_MODULE_CFI

Algorithm 2 then generates the CFG for the whole binary and extracts all relevant branching
nodes (line 2). A branching node is considered relevant if it has two successors, indicating a
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conditional jump. It then iterates over all the relevant nodes, checking if the successors contain the
required instructions (line 4). One successor has to contain a system interrupt instruction, such as
ud for ARM, and the other a call instruction. If both instructions are present in the two branches,
the function check_cmp() is called (line 5) to verify if the comparison is based on the register used
in the call instruction. The comparison is directly based on the register used in call (line 9). In
that case, the algorithm terminates with the result that single-module CFI is enabled (line 10). It
could also be indirectly based on the call register, which requires further checks (line 12). The
registers used in the cmp statement are traced back to identify whether one of them was assigned to
the content of the register used in the call (line 15). If so, the algorithm concludes that the binary
was compiled using single-module CFI (line 16). Otherwise, the functions return to the fallthrough
that single-module CFI was not used (line 6).

Algorithm 2 Check the presence of single-module CFI

1: procedure CHECK_SINGLE_MODULE_CFI

2 branching_nodes <« cfg.GET_BRANCHING_NODES

3 for branching_nodes do

4 if cfi_check_failed && call_instruction in successor then
5 CHECK_CMP(n, s2)

6

single_module_cfi < False

8: procedure CHECK_CMP(n, s2)

9: if check_statement exists && based on call_reg then
10: single_module_cfi « True
11 else
12: TRACK_REG(code, call_reg)
13:
14: procedure TRACK_REG(code, call_reg)
15: if reg in cmp_regs assigned to call_reg then
16: single_module_cfi < True
17: single_module_cfi < False

There are three possible output options when detecting that a binary is compiled using forward-
edge CFL The first belongs to multi-module CFI (cross-DSO) identification, and the other to
single-module CFI. When looking for single-module CFI, two possibilities exist: Either the register
containing the address to the protected call target is directly used or indirectly, meaning that the
comparison is based on the value of the target (its address) but using another register with possible
calculations before.

3.2.2 Backward-edge CFI Detection. Algorithm 3 verifies the presence of backward-edge CFI
implemented as the ShadowCallStack. As this detection is also based on code patterns, such as
the detection of the single-module CFI, the algorithm needs the generated CFG. From the CFG, it
obtains all functions present in the binary and iterates over them (line 2). Only functions that return
are of relevance to us. For each relevant function, Algorithm 3 determines the entry block (first
basic block of the function) and all return blocks. One function can have more than one basic block
containing the ret instruction. The entry block is then checked to contain the str instruction in
combination with register x18 (line 4). The entry block corresponds to the function’s prologue and
is responsible for storing the return address on the ShadowCallStack. If the prologue passes this
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check (line 6), the return blocks are checked if they contain the 1dr instruction combined with the
shadow-call-stack-register (x18) (line 7). The return blocks correspond to the function’s epilogue. If
this condition is also true, the algorithm returns “shadow_call_stack = TrUE” (line 8), otherwise
“shadow_call_stack =FaLse”(line 9).

Algorithm 3 Check the presence of backward-edge CFI (ShadowCallStack (SCS))

1: procedure CHECK_SHADOWCALLSTACK
2 for addr, func in all_functions do
3: prologue < False
4
5

if scs_reg is stored in entry_block then > scs_reg = register to store SCS
prologue < True
6 if prologue then
7 if scs_reg is loaded in return_blocks then
8: shadow_call_stack < True
9 shadow_call_stack < False

3.3 Implementation

SECFI* is purely written in Python in approximately 1300 lines of code and makes use of the
angr framework [64]. angr is responsible for loading the binaries, finding the symbols (Algo-
rithm 1), and generating the CFGs (Algorithm 2 and Algorithm 3). SEECFI aims to detect the
deployment of forward- and backward-edge CFI based on LLVM’s implementation, which is part
of its compiler Clang. The structure of the GCC is checked based on the presence of the function
__VLTVerifyVtablePointer. We could not identify any binaries compiled with this GCC’s CFI
implementation. In fact, the option to compile a binary with CFI is unavailable by default in GCC.
It is necessary to manually rebuild GCC with the CFI option set to make it available [78]. Therefore,
it is rather unlikely that it is widely used.

4 METHODOLOGY

We first explain our data collecting, giving more details about the used images in Section 4.1.
Next, we provide our research questions and describe the experimental setup for each of them in
Section 4.2.

4.1 Data Collection

In total, we collected 102 different system images: 51 Android images and 51 Linux images. We
analyzed about 610K binaries, of which ~91.5% were compiled from a memory-unsafe language
(C/C++). The majority of analyzed binaries are 64-bit, and overall, less than 5% were 32-bit-based
executables.

4.1.1 Android Images. Our data contains Android versions spanning from Android 7.1.0 to 13.0.0,
covering the years from 2017 to 2022. We have one additional Android image of version 4.4, released
in 2015. We use the versions released before 2018 (forward-edge CFI was added to Android in 2018)
to evaluate the performance of SEECFI described in Section 5.2. Five out of the 51 Android images
originate from Samsung, downloaded from [60], and belong to the Samsung Galaxy S series (see
Table 2 in the Appendix). The versions span from Android 8.0.0 to Android 12.0.0. All other images
are designed for the Google Pixel devices. Our dataset includes images from the Pixel XL (rmarlin)

4https://github.com/software-engineering-and- security/SeeCFI
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phone to the Pixel 7 Pro (cheetah) device. We analyze 19 images provided by Google [63], ranging
from Android versions 7.1.0 to 13.0.0, and depicted in more detail in Table 2 in the Appendix. In
addition, we analyze the most recent images of the GrapheneOS [29] operating system, spanning
from Android version 12.0.0 to 13.0.0 and available for Pixel 3 to Pixel 7 Pro. Moreover, we study
the corresponding Google images [63].

4.1.2  Linux Images. We apply SEECFI to 51 Linux images in total, 26 Debian and 25 Ubuntu images.
The Ubuntu [77] versions range from 12.04.4 to 22.10 of desktop images and cover the years from
2014 to 2022. The Debian [19] versions span from 5.0 to 11.5.0 of live images published between 2009
and 2022. The Linux kernel also uses LLVM’s CFI implementation [15]. Table 3 in the Appendix
contains more details about the different versions and images.

4.2 Experimental Setup

All experiments analyze binary files extracted from system images and follow the generic process
described in Section 4.2.1. It is not necessary to analyze the images more than once as SEECFI
produces deterministic results since it is based on a strict pattern-matching approach. Nevertheless,
there are slight variations between different experiment setups aiming at answering the following
questions:

RQ1: How does the deployment of forward-edge CFI evolve throughout the different Android and
Linux versions based on Google, Samsung, Debian, and Ubuntu releases? (see Section 4.2.2)

RQ2: How much more is forward-edge CFI incorporated into GrapheneOS, a system specialized
in security and privacy, compared to Google’s releases? (see Section 4.2.3)

RQ3: To what extent is the backward-edge CFI option used in the different Android versions and
GrapheneOS, and does that correspond to forward-edge CFI deployment? (see Section 4.2.4)

The experimental setup to evaluate the performance of SEECFI is described in Section 4.3.

4.2.1 Analyzing System Images. We use SEECFI to analyze all binaries included in an image file
(.img or .iso). The whole pipeline of this process is illustrated in Figure 2. So far, SEECFI can
analyze Android-based images and Linux images based on Debian, e.g., Ubuntu. In the first step,
all binary files are extracted from the image. This can include additional steps to extract binaries
contained in special files such as .apex files, .deb packages, or compressed squashfs. These
files are unpacked and, if necessary, mounted individually. SEECFI then iterates over the list of
all binaries. The following steps are performed for each binary individually. A database lookup
is performed to determine whether the binary already exists. Then, it is checked if the binaries
were compiled from C or C++ source code. This is done by a simple grep command to scrutinize
whether the tag “.note.gnu.build-id” is present in the binary. Supposing the binary is marked
as compiled from a memory-unsafe language. In that case, it is analyzed by SEECFI, and the results,
including the binary’s general information, such as name and path, are added to the database.

Practical Considerations — All files identified as ELF files by the file tool are added to our
database. If angr cannot load a binary file or generate its CFG, SEECFI returns an error message.
This error message and the corresponding binary file are added to the database, indicating that this
binary could not be analyzed or could only be partly analyzed. If the binary could not be loaded and
thus not analyzed at all, it is not considered in the results below. Most of the errors occur due to an
angr issue. Moreover, for performance reasons, SEECFI terminates the CFG generation if it takes
longer than 15 minutes. If the CFG cannot be generated, the binary can still be partly analyzed,
resulting in flagging it as compiled without forward-edge CFI. Android uses the multi-module
option of LLVM’s forward-edge CFI implementation [51], SEECFI checks this without generating
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the CFG of the given file. Only if it cannot detect multi-module does it generate the CFG and
check the presence of single-module CFL If the generation fails, it still means that the binary
was not compiled using the multi-module option. Therefore, it is considered not compiled with
forward-edge CFI in general.

In our implementation, we distinguish between three errors that lead to the binary not being
analyzed completely. The first occurs when angr cannot load the binary. This means SEECFI cannot
analyze the binary at all. The second and third errors are raised when the CFG cannot be generated.
Either because angr could not generate the CFG due to internal errors. Or caused by a timeout error
raised by SEECFI. Among the memory-unsafe binaries analyzed, ~5.5% could not be processed due
to one of the previously mentioned errors. Of these failed cases, 73% were due to angr being unable
to load the binary, while the remaining 27% occurred because angr could not generate the Control
Flow Graph (CFG). No binary caused a timeout.

4.2.2 RQ1 Setup: Android Versions (Google and Samsung) and Linux Versions (Debian and Ubuntu).

Android Versions— To answer the first question, we analyzed 19 different images released by
Google and five different Samsung images spanning from Android 7.1.0 to the most recent version,
Android 13.0.0. The images used for the experiments are in Table 2 in the Appendix.

We assume that all versions below Android 9 do not have forward-edge CFI as Google only
introduced forward-edge CFI by default to the kernel and other components starting with Android
8.1 [52]. For all versions above Android 9, we expect the deployment of forward-edge CFI to
increase as security becomes more important for Google over time [23, 53]. Moreover, we expect
that Samsung will have a lower adoption rate since they add binaries on top of Google’s.

Linux Versions— We analyzed 25 different Ubuntu images and 26 Debian images. The Ubuntu
images start with version 12.04 and go up to the latest release of 22.10. The Debian images start
with version 5.0 and range up to version 11.5. We only consider amd64-based implementations. For
this setup, we also expect to see an increase in forward-edge CFI deployment over time.

4.2.3 RQ2 Setup: GrapheneOS and Google. We analyze 15 factory images released by the open-
source project GrapheneOS [29], which is based on the Android operating system and highly
focuses on privacy and security. In addition, we analyze the corresponding factory images released
by Google to compare the results and to answer the second question. Table 4 in the Appendix
shows the phone and Android versions of the tested images. The Pixel series 4 to 7 runs Android
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13, and only the Pixel 3 series still runs Android 12. These images correspond to the latest releases
by GrapheneOS. Due to its focus on security and privacy, we expect to see a higher deployment of
forward-edge CFI in the GrapheneOS releases. GrapheneOS uses a hardened memory allocator® to
achieve this. It is a custom memory management system designed to enhance security by reducing
the risk of memory-related vulnerabilities, such as buffer overflows and use-after-free errors. It
achieves this through extensive randomization of memory allocations, isolation of different memory
types, delayed freeing of memory to prevent reuse, and using guard pages and consistency checks
to detect and prevent heap corruption. This allocator is optimized for security over performance,
making it harder for attackers to exploit memory-related weaknesses.

4.2.4 RQ3 Setup: Backward-edge CFl in Android. SEECFI automatically runs the backward-edge CFI
detection on all images mentioned in 4.2.2 and 4.2.3. We evaluate if the deployment of backward-
edge CFI corresponds to the deployment of forward-edge CFI, and by that, we can answer the
third question. The backward-edge CFI implementation, called ShadowCallStack, is only available
for aarch64-based systems due to time-of-check-to-time-of-use races [75] security issues on x86_64
systems. Thus, we only consider the Android-based images as an implementation for the collected
x86_x64-based Linux images does currently not exist. We expect that the deployment will increase
throughout the different Android versions. Moreover, we expect the overall deployment of backward-
edge CFI to be higher than forward-edge CFI since backward-edge CFI is easier to implement.

4.3 Performance Evaluation Setup

4.3.1 Makefile and Blueprint Analysis. We evaluate the performance of SEECFI based on a MAKEFILE
and BLUEPRINT analysis of the Android Open Source Project (AOSP) to assess the false positive
and false negative rates of SEECFL. MAKEFILEs and BLUEPRINTS are the file types used by the build
systems deployed by Android. These files contain compilation specifications, including whether
a binary should be compiled using CFI. MAKEFILES are part of the GNU Project [57] and, for
example, used by operating systems such as Debian and Ubuntu. From Android 7 on, Android
started moving to the Soong Build System [6], which uses BLUEPRINTS. Since then, Android has
started to increasingly use BLUEPRINTS, but even in the newest versions, there are still remains
from GNU Make. In order to analyze them, it is necessary to have access to the source code. This
approach is, therefore, not applicable to any vendor image, such as Samsung or Google Pixel devices.

We downloaded the source code of five different Android (AOSP) versions: 4.1, 8.1, 9, 12, and 13.
We then parse the included MAKEFILEs and BLUEPRINTS to extract which binaries are supposedly
compiled with the CFI option. This information is stored as a simple tag [52] within the file. In
addition, we have to consider three different files that represent a specific part of the hierarchy
of Android’s build system. The cfi_common.mk file must be parsed, as it contains a list of paths,
which causes all files compiled within these paths to use CFI by default. In contrast, the files
cfi_blocklist.txt and cfi_blacklist.txt include lists of paths, files, and functions that are to
be excluded from compilation with CFL Afterward, we compile the source code and leverage SEECFI
on the resulting images. In the last step, we compare the outcome of the MAKEFILE/BLUEPRINT
analysis with the output of SEECFI and, in doing so, we can compute the false positive and false
negative rates of SEECFI.

4.3.2 Additional Manual Analysis. Additionally, we conducted some manual analysis of versions
known not to have CFI and programs defined to have CFI enabled.

Assessment of False Positives— We use Android images released before forward- and backward-
edge CFI was officially added to Android to verify that the detection does not generate any false

Shttps://grapheneos.org/features#hardened-memory-allocator
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positive, as these images should result in no binary compiled with CFL This includes all Android
versions before Android 8.1 (2018) (~8K binaries). Furthermore, we analyzed Debian and Ubuntu
images released and updated the last time before 2015 (~81K binaries), meaning before forward-
and backward-edge CFI was implemented in Clang. If SEECFI returns any binary to be compiled
with CFI (=100 binaries), we inspect it manually using Ghidra [48]. We use the old Android versions
to evaluate SEECFI performance regarding multi-module CFI detection and backward-edge CFIL,
and the older Linux releases to assess its performance regarding single-module CFL

Assessment of False Negatives— The second stage is to verify that all the binaries determined to
be not compiled with forward- and backward-edge CFI are actually not compiled using forward-
and backward-edge CFI. We also achieve this by manually analyzing a subset of binaries using
Ghidra and verifying that there is no indication of CFL To do so, we leverage SEECFI on the current
Firefox ERS binary (version 102.11.0 [45]) to verify that SEECFI detects forward-edge CFI when it is
known to be present. Moreover, we compiled 15 files manually with forward-edge CFI enabled.
Then, we manually check if SEECFI provides the correct results.

5 RESULTS OF SEECFI

In this section, we describe and discuss our results. We start with our observations based on the
outcome of the experiments described in Section 4.2. Then we follow with the evolution of forward-
and backward-edge CFI. Lastly, we discuss our observations. On average SEECFI needed 1.5 minutes
to analyze each binary, resulting in an overall runtime of, for instance, 45.8 hours in the case of
Android 13 (Pixel 7 Pro).

5.1 Observation of Experiments

5.1.1  RQI: Android (Google and Samsung) and Linux (Debian and Ubuntu) Versions. In this section,
we answer the first question and explain, based on our results, how the forward-edge CFI deployment
evolves throughout different versions of Android and Linux.

Andproid Versions— Figure 3 shows the evolution of the number of binaries compiled with forward-
edge CFI throughout different Android versions. The introduction of forward-edge CFI started
slowly with Android Oreo (Android 8.1) in 2018. In Android 10 (2019), the number of CFI compiled
binaries almost tripled from ~2.7% to ~7%. It increases even more drastically in Android 11 (2020)
by more than 200%, resulting in ~20.1%. After this enormous spike, the increase slows down slightly.
Nevertheless, CFI continues to rise steadily from the ~20.1% to ~26.8% in Android 12 (2021) and up
to ~28.7% in Android 13 (2022). This fits our expectation that the forward-edge CFI deployment
increases throughout the different Android versions.

Figure 4 displays the total number of binaries analyzed. The number of binaries analyzed is
significantly lower in Android 11 (2020) than in Android 12 (2021). Structural changes in the
Android ecosystem could explain this decrease in the total number of binaries. Most of the missing
files are hardware-related binaries and libraries. In addition, Android 12 introduces a considerable
number of new hardware-related binaries that were not present in Android 11 [22]. The increase in
forward-edge CFI-compiled binaries can be explained by the fact that Android 13 (2022) focuses
more on security than its predecessors [34].

The forward-edge CFI deployment for the Samsung images is almost identical for Android
versions 9 (2018) and 10 (2019). For Android versions 11 (2020) and 12 (2021), we can see a signifi-
cant difference between the adoption of forward-edge CFI in Google and Samsung releases. The
similarities in Android 9 and 10 can be explained by the currently, still generally low deployment
level (<5%). The difference, on the other hand, is explainable by the fact that Samsung adds further
binaries on top of Google’s. On average, Samsung has 33% additional binaries, and most of these
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Fig. 3. Evolution of the forward-edge CFI deployment throughout Android versions (Google & Samsung) and
Linux versions (Debian & Ubuntu) see Table 1 in the Appendix

binaries do not have forward-edge CFI. This aligns with our expectations that the deployment of
forward-edge CFI is lower in Samsung releases.

Overall, the percentage of forward-edge CFI deployment is improving. However, the highest
level remains relatively low (~28.7%) (Google), considering the impact of a successful memory
corruption attack on a system.

Take-away message 1: Our results show that the deployment of forward-edge CFI is continu-
ously increasing throughout the different Android versions, which indicates that the security
is also improving. However, the overall percentage of binaries compiled with forward-edge
CFI remains considerably low (~28.7%) when considering how severe a successful memory
corruption attack on a system can be. As expected, the deployment of forward-edge CFI is
lower in the Samsung images than in the Google releases. Our results suggest that Samsung
is not adding any CFI mitigations in their additional binaries.

Linux Versions— As depicted in Figure 3, the deployment in both Linux systems, Debian and
Ubuntu, is extremely low (<1%) in comparison to Android. Reasons may be found for the higher
total number of binaries in Linux systems than in Android systems. This is illustrated in Figure 4
based on all binaries identified as compiled from a memory-unsafe language, showing that the Linux
images have a significantly higher amount than the Android images. The clearly larger quantity of
memory-unsafe binaries indicates that the attack surface is substantially more extensive than in
Android. The deployment rate of forward-edge CFI in Debian (~0.22% in 2022) is twice as high as
in Ubuntu (~0.08% in 2022). However, it is still clear that the difference between Android and Linux
deployment rates is significant, leaving the analyzed Linux systems more vulnerable to control-flow
hijacking attacks. Moreover, deployment is not increasing, but it is approximately staying at the
same level. Our results do not match our expectations. We expected that the deployment would
increase, but that is not the case. In addition, we expected the percentage to be generally higher. The
binaries containing CFI are primarily part of the Linux kernel [15]. This also explains why Debian
and Ubuntu have the same binaries compiled with CFI for their responding versions. We also
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Fig. 4. Comparison of the total amount of memory-unsafe binaries found in the different images of Figure 3

checked for binaries compiled with GCC’s CFI option, but SEECFI could not identify any. Binaries
cannot be compiled with CFI when using the standard version of GCC with which operating
systems are shipped. Instead, GCC must be rebuilt manually, and thus, it is unlikely that many
binaries enable CFI through GCC.

Take-away message 2: The deployment of forward-edge CFI is severely lower in Linux
than in Android systems. Moreover, the adoption of forward-edge CFI has not increased
throughout the years, indicating that security in this context is not improving. This is
especially interesting since the Linux system has, on average, more than five times the
amount of memory-unsafe binaries. This leads to the conclusion that Debian and Ubuntu
offer a larger attacker surface and are more susceptible to memory corruption vulnerabilities
compared to Android. Android uses the multi-module CFI option, while Linux deploys
single-module CFI. As Google has proven, it is possible to increase the adoption of CFI to at
least ~28.7%, so there is still space for improvement for Debian and Ubuntu.

5.1.2  RQ2: GrapheneOS and Google. In this section, we explain our results regarding question two,
and compare the deployment of forward-edge CFI in Google and GrapheneOS releases. Thus, we
compare the results of the 15 latest Google and the 15 latest GrapheneOS releases for the different
Pixel devices as illustrated in Table 4 in the Appendix. For each GrapheneOS release, we analyze
the corresponding Google image. Google and GrapheneOS releases for Pixel phones 4 to 6a are
running Android 13, while the releases for the Pixel 3 series use Android 12.

We expected the results to be higher for the GrapheneOS releases compared to Google releases.
However, the results in Figure 5 show that GrapheneOS and Google releases have an almost equal
adoption rate for the Pixel 3, 6, and 7 series. However, Google has a clearly higher rate for the
Pixel 4 and 5 phones. This difference could be explained by GrapheneOS adding binaries on top
of Google’s. Additionally, although GrapheneOS has a more significant number of CFI-enabled
binaries, it still has a lower rate than Google.

There is a slight decrease in binaries compiled with forward-edge CFI from the Pixel 5 series to
the Pixel 6 series for Google. This can be explained by the fact that not all features and structural
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Fig. 5. Evolution of the forward-edge CFl deployment comparing GrapheneOS and Google releases

changes of Android 13 are backported to older phones. Most binaries that cause the drop in the total
number of analyzed binaries are related to hardware and kernel modules that are not present in the
Android 13 version of the Pixel 6 series anymore [34, 55]. Many of these binaries were compiled
using forward-edge CFIL explaining why these structural changes influence the percentage. The
additional security and privacy features [28], present in GrapheneOS, could be the reason for the
slightly higher number of binaries in their images. GrapheneOS adds ~16.7% to the Pixel 3 series,
~14.2% of binaries to the Pixel 4 and 5 series, and <1% to the Pixel 6 and 7 series. Out of the
additional binaries ~14.5% (Pixel 3 series), ~11.5% (Pixel 4 and 5 series), and 0% (Pixel 6 and 7 series)
are compiled using forward-edge CFL. GrapheneOS reuses about 84-99.5% of Google’s binaries,
with the highest reuse rate for Android 13. This explains the high similarities between the results.

Take-away message 3: Contrary to our expectations, the deployment of forward-edge CFI in
GrapheneOS releases is not higher than in Google releases. This leads us to two conclusions.
On the one hand, CFI does not seem to be an aspect GrapheneOS aims to focus its effort on
enforcing security. On the other hand, it could imply that forward-edge CFI is so challenging
to deploy that not even a security-focused operating system adopts it at a higher level.

5.1.3  RQ3: Backward-edge CFl in Android. This section answers the third question about the extent
of backward-edge CFI (ShadowCallStack) deployment in Android versions released by Google,
Samsung, and GrapheneOS. We run the detection of backward-edge CFI on 30 different Google
releases, 15 GrapheneOS releases, and five Samsung releases to see the deployment of backward-
edge CFI over time. In Figure 6, we summarize the results based on years for the different Android
versions, including Google and Samsung releases. Additionally, we provide the percentage of
binaries with both forward- and backward-edge CFI. Forward-edge CFI was introduced in Android
8.1(2018) and backward-edge CFI in Android 9 (2019) [38]. Since backward-edge CFI was introduced
in 2019, Figure 6 starts in that year.
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Figure 6 shows that backward-edge CFI increases more rapidly than forward-edge CFI and has
overall a higher deployment throughout all versions. In Android 13, SCS (ShadowCallStack) reaches
its highest percentage of ~31.6%. In comparison, ~28.7% of analyzed binaries in the same image
are compiled using the forward-edge CFI option. On average, only half of the binaries compiled
with forward-edge CFI are also protected by backward-edge CFI (~15.52%). Similar to forward-
edge CFI, the adoption of backward-edge CFI in the Samsung releases is proportionally lower
than in the Google releases. Figure 7 illustrates the results of comparing the backward-edge CFI
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Fig. 7. Evolution of the backward-edge CFl deployment comparing GrapheneOS and Google releases

deployment of GrapheneOS releases with the corresponding Google releases, giving similar results
to the comparison of the forward-edge CFI deployment. The adoption in GrapheneOS is almost
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identical to the one in Google releases. Only for the Pixel5 series, Google shows a slightly higher
deployment. However, the percentage of binaries protected by forward-edge CFI and backward-edge
CFI simultaneously is almost identical for Google and GrapheneOS.

Overall, the deployment of the backward-edge CFI option is higher than that of forward-edge
CFI. This matches our expectations.

Take-away message 4: Backward-edge CFI is deployed on a higher level than forward-
edge CFI for all Android releases. Moreover, our results show that the adoption of SCS is
continuously increasing. The higher deployment rate can be explained by the less complex
implementation and the lower overhead. For instance, in order to apply forward-edge
CFI correctly, the compiler needs to generate the CFG and determine all possible valid
destinations of an indirect jump or call. Backward-edge CFI only needs to add storing the
return address in the function epilogue on the SCS and popping and comparing it in the
function’s prologue. This also means the backward-edge control flow (function returns) is
better protected than the forward-edge.

5.2 Evaluation of SEECFI’s Performance

5.2.1 Makefile and Blueprint Analysis. The evaluation of the results of the MAKEFILE and BLUEPRINT
analysis shows that SEECFI has a false positive rate of 0 and a false negative rate of 0.17. However, it
is interesting to mention that the false negative rate decreases significantly with each incremental
Android version. For example, Android 9 showed a FN rate of 0.37, Android 12 merely a rate of
0.015, and Android 13 dropped to 0 false negatives. The high amount of false negatives is caused by
binaries that are part of the Android VNDK system. The majority of these binaries are 32-bit, which
is one of SEECFI limitations covered in Section 5.2.3. VNDK is the vendor native development kit and
enables Android to separate vendor partitions from the rest of the system, allowing framework-only
updates [7]. The structure of these libraries was changed with later Android versions, likely leading
to the observed decrease in the false negatives [8]. We manually inspected the VNDK binaries
in Android 9 and later versions and observed that about 90% were removed entirely in the later
versions. Throughout our performance evaluation, we analyzed a total of 3763 binaries. 533 binaries
were correctly classified as compiled with CFI and 2733 without CFL Both the MAKEFILE/BLUEPRINT
analysis and SEECFI did not detect any binaries compiled with CFI in Android 4 as CFI was not
implemented yet. SEECFI has an average false negative rate of 0.17 and a false positive rate of 0 for
its multi-module CFI detection.

5.2.2  Additional Manual Analysis. We first present the results of our manual analysis focusing on
false positives, followed by the results of the evaluation of false negatives.

Assessment of False Positives— As expected, the results of Android 4 and 7 show that 0 binaries
are compiled with forward-edge CFI. Forward-edge CFI was introduced into Android from version
8.1 onwards. This matches our results and verifies that SEECFI has no false positives for its multi-
module CFI detection. The analysis of the Debian and Ubuntu versions released and updated
the last time before 2016 shows that SEECFI has a false positive rate of 0.12 (110 binaries out of
80770 binaries). We manually inspected the 110 binaries causing this rate. We found some code
related to crash handling and forcefully terminating the program®. All these FPs occurred in kernel
modules. These binaries include precisely the same pattern as forward-edge CFI. Thus, SEECFI
cannot distinguish between them. It is evident that the presence of CFI cannot cause this, as these

%An example of code causing false positives can be found at https://github.com/torvalds/linux/blob/v3.11-rc7/fs/coda/file.c.
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binaries were compiled before CFI was implemented. SEECFI has a false positive rate of 0.004 for
its single-module CFI detection.

Assessment of False Negatives— We could not find any false negatives for the single-module CFI
detection of SEECFI as it correctly detected all test binaries, including Firefox, as compiled with
forward-edge CFIL. We additionally chose a random subset of binaries (~50), from the 1ib directories
of Ubuntu 22.04.1 and Debian 11.5.0 and manually searched for indications of (single-module) CFI
in these. We were not able to identify any. Thus, we conclude that SEECFI has a false negative rate
of 0 for its single-module CFI detection.

5.2.3 Limitations. CFl-unrelated patterns— There still remains the possibility of other CFl-unrelated
code patterns resembling the structure of the CFI pattern used for detection. Moreover, we cannot
ensure that all binaries compiled with CFI are detected and that none is missed.

Cast checks— Clang’s forward-edge CFI implementation includes cast checks, which are not
covered by our detection algorithms. However, the evaluation of our MAKEFILE and BLUEPRINT
analysis (see 5.2.1) shows that this does not seem to have any impact on our results, as we do not
have any false positives.

x18 register— In most cases, Android ensures that the x18 register, needed as a special purpose
register by the backward-edge CFI implementation, is protected and not used by any other instruc-
tion. However, this cannot be ensured in specific cases, e.g., when using SP-HALs. The hardware
abstraction layer (HAL) is a standard interface used by hardware vendors, allowing Android to
be independent of lower-level driver implementations [5]. They are implemented in the form of
shared libraries. Same-process HALs (SP-HALS) are “always open[ed] in the same process in which
they are used” [4].

32-bit binaries— Our evaluation in Section 5.2.1 showed that SEECFI performs slightly worse for
32-bit binaries. Indeed, only one 64-bit binary resulted in a false negative in all Android binaries
analyzed.

Optimization & obfuscation— We do not consider any specific optimization or obfuscation options.
Nevertheless, the false positive rate evaluated on Android is 0, and the false negative rate is 0.17.

5.3 Discussion of Experiment Results

In the following, we discuss the observations from Section 5.1 and provide possible explanations
for our results. We have three main observations:

(1) The deployment of forward-edge CFI is considerably higher in Android than in Linux
systems.

(2) Our results show that the deployment of forward-edge CFI is still relatively low, even though
it was introduced more than ten years ago, officially implemented about seven years ago,
and officially included in Android’s kernel and userspace five years ago. In particular, the
deployment is surprisingly poor when considering the severe effects a successful memory
corruption attack can have.

(3) The deployment of backward-edge CFI (ShadowCallStack) is higher than the forward-edge
CFI adoption.

Adding CFI support to Android came with different challenges. When using LLVM’s forward-
edge CFI, link-time optimization (LTO) is required. This introduces an overhead as linking requires
substantially higher memory and CPU cost [38]. Furthermore, Android’s developer team needed
to extend and patch the original implementation to make it work without causing programs to
crash [38]. This kind of general implementation, including specific fixes, is unavailable for all
Linux distributions. kCFI [44] was one approach to adding forward-edge CFI to the Linux kernel.
However, their repository [26] was not updated in the last three years, indicating that it is no longer
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maintained. Moreover, in Linux systems, it is more of the responsibility of the different developers
to enable CFI for their applications than system-wide support [41]. The NX bit, for instance, is
used in Linux systems and can be deployed at a system-wide level, requiring little change to the
application side. This might lead to CFI’s significantly lower deployment rate in Linux systems
compared to Android.

The general lack of deployment could have several reasons. The first reason is the still prevalent
overhead in performance and size when a file is compiled with CFI, as mentioned before, related to
LTO. The Clang team has observed up to 15% overhead with the Chromium browser as the “scheme
has not yet been optimized for [this] binary size” [70]. The second reason is that forward-edge CFI
can cause function type mismatch errors and assembly code type mismatch errors, which cause the
affected program to crash. The latter error is caused by functions calling assembly code directly [52].
They can be fixed by adding these specific functions to a forward-edge CFI blacklist. Considering a
high amount of functions calling assembly code, the maintenance of such a blacklist would have a
negative impact on the development time. Moreover, even though CFI reduces the attack surface
and thus makes the exploitation of memory corruption vulnerabilities more complex, significant
ongoing research has discovered ways to bypass forward- and backward-edge CFI. We give an
overview of possible bypasses in Section 6. All these are reasons not to deploy or only deploy CFI
to a limited extent.

The fact that backward-edge is deployed on a higher level than forward-edge could be caused
by the possible overhead introduced by forward-edge CFI mentioned in Section 5.1.3. The higher
utilization rate results from a less complex implementation and lower overhead. For example, to
use forward-edge CFI correctly, the compiler must generate the CFG and determine all possible
valid targets of an indirect jump or call. Backward-edge CFI, in contrast, only needs to store the
return address on the shadow stack. This is done in the function’s prologue. This value is then
restored from the shadow stack and compared with the return address obtained from the regular
stack. These instructions are performed in the function’s epilogue.

In order to evaluate future implications, we consider Android. Although CFI was added to the
Android system roughly five years ago, memory corruption vulnerabilities still pose the majority
of severe Android vulnerabilities in 2022 [43]. This caused Android to adopt additional memory
protection mechanisms, such as Memory Tagging Extensions (MTE) [9], in the future. This leads
us to the conclusion that in the future, the use of hardware support will be needed, such as MTE,
which is “a hardware implementation of tagged memory” [9]. However, the long-term solution will
presumably be to switch more and more to memory-safe languages, as Android has started to do.
For instance, Android developers started moving from writing low-level code in memory-unsafe
languages such as C and C++ to the memory-safe language [65, 66] Rust [69], eliminating the need
for CFI completely [42]. Although Rust comes with its own challenges, it continues to fulfill its
promises regarding a safer memory, as shown by Xu et al. [79]. They studied all known Rust-related
CVEs, 186 at the time of 2020-12-31. They found that they all relate to “including automatic memory
reclaim, unsound function, and unsound generic or trait” [79].

Since it is unlikely that most of the existing code will be rewritten in memory-safe languages’,
CFI, in combination with other techniques, is still one of the most promising mitigation mechanisms
if it is used. In essence, while the other protections (stack canaries, FORTIFY, NX, ASLR, and PIE)
make it harder to exploit memory vulnerabilities, CFI ensures explicitly that even if an attacker can

"“Of course, introducing a new programming language does nothing to address bugs in our existing C/C++ code. Even if we
redirected the efforts of every software engineer on the Android team, rewriting tens of millions of lines of code is simply not
feasible." [66]
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corrupt memory, they cannot easily redirect the program’s execution to their malicious code. This
makes the overall security of the binary much more robust.

5.4 Additional Mitigation Techniques

We checked the presence of four standard mitigation techniques against memory corruption
vulnerabilities that should be used in combination with CFIL Each image and, if needed, all included
binaries were checked individually.

5.4.1 Address Space Layout Randomization (ASLR) and Position-Independent Executable (PIE). are
both techniques aimed at increasing the security of a system by making it more difficult for an
attacker to predict the memory locations of critical components. ASLR works by randomly arranging
the address space positions of key data areas such as the stack, heap, and libraries, making it harder
for attackers to exploit memory corruption vulnerabilities. PIE complements ASLR by enabling
the entire executable to be loaded at random memory addresses rather than at a fixed location,
further enhancing its effectiveness. We verified if ASLR is enabled by checking the system-wide
configuration; see Section 7.2.4. PIE needs to be identified on a binary level by applying the tool
hardening-check®. Our results show that Android (Google, Samsung, and GrapheneOS), Debian,
and Ubuntu have both mitigation techniques enabled, system-wide and for each binary.

5.4.2 Data Execution Prevention (DEP) and the NX (No-eXecute). bit, on the other hand, are related
to preventing certain types of code execution attacks. DEP is a security feature that marks certain
memory areas as non-executable, meaning that the code cannot be executed even if an attacker
injects code into these areas. The NX bit is a hardware feature that enforces this protection by
flagging specific memory pages as non-executable. DEP is an umbrella term, while the NX bit is a
specific hardware implementation. DEP features protect against specific exploits, such as buffer
overflows, by ensuring that injected code cannot be executed, even if it is successfully placed
in memory, e.g., on the stack. We used hardening-check to determine whether the system was
protected by preventing data execution. In addition, we verified whether the NX bit was set at the
system level. All considered operating systems are entirely protected by DEP, more precisely by its
No-eXecutable (NX) hardware implementation.

6 LIMITATIONS OF CONTROL FLOW INTEGRITY

CFI mitigates the ability of attackers to launch control flow attacks. However, it cannot completely
prevent these types of attacks, as there are proven ways to bypass CFL For this reason, researchers
are constantly striving to find new vulnerabilities to get ahead of attackers. In this section, we
summarize the known possibilities for bypassing forward-edge CFI and backward-edge CFI.

6.1 Forward-edge CFI

One of the most recent attacks is called WrapAttack. Xu et al’s [80] attack is based on the discrepancy
that compilers do not distinguish between code introduced for security reasons and application code.
This introduces an additional attack vector leading to Time-Of-Check-to-Time-Of-Use (TOCTTOU)
attacks. Conti et al. [14] describe another attack that benefits from compiler optimization that
violates the security assumptions made by the mitigation mechanism. The vulnerability is that
security-relevant register values can be spilled on the stack. CFI and other mechanisms assume
that the compiler handles these values in a protected way. However, this is not the case in practice.

Goktas et al. [27] show in their paper that it is possible to perform control-flow hijacking attacks
still using a specific type of code-reuse attack. They introduced two kinds of gadgets, CS (call-site)

8https://manpages.ubuntu.com/manpages/bionic/man1/hardening-check.1.html
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and EP (entry-point), that can be chained together to build a malicious payload. The presence of
ASLR makes the attack more sophisticated as the localization of the needed gadgets gets more
complex. However, ASLR is prone to data leakage vulnerabilities and can be bypassed. Moreover,
they mention in their paper the possibility of accessing a protected sensitive function when being
able to locate a gadget containing a direct call to this function. Forward-edge CFI does not protect
direct calls; thus, calling them does not violate CFI policies.

Evans et al. [25] describe a similar approach using ACICS (Argument Corruptible Indirect Call
Site) gadgets. Attackers can use these gadgets to perform a Remote Code Execution. This attack is
called control Jujutsu. Even though Tice et al’s paper [76] was published in 2015, Sayeed et al. [61]
showed in 2019 that LLVM’s and GCC’s CFI implementations still fail to protect software against
this attack.

Control-Flow Bending is another attacker introduced by Carlini et al. [13] and is similar to the
ones mentioned before. Instead of hijacking the control flow, the attacker “bends” the control flow
within the allowed CFG, meaning that the attacker only uses legitimate call and jump targets. These
attacks are mainly possible due to the over-approximation in the generated CFGs, resulting in the
graphs containing more edges (execution paths) than the actual execution. Constructing a sound
and complete/precise CFG solely based on static analysis is not possible. However, there is no
scalable way of using another approach to gather the information needed to build a sound and
precise CFG. An unsound CFG can impede the proper functionality of a program. Therefore, an
imprecise CFG contains more execution paths than actually exists. This imprecision increases the
attacker’s surface by allowing them to exploit the additional call and jump targets. Nevertheless,
Evans et al. [25], and Carlini et al. [13] have shown that even a fully precise forward-edge CFI
implementation with a sound and precise CFG would be prone to these attacks.

6.2 Backward-edge CFI (ShadowCallStack)

One of the obvious limitations of backward-edge CFI’s implementation is that it is only available for
aarch64-based systems. When LLVM introduced backward-edge CFI in the form of the ShadowCall-
Stack with version 7.0.1, they provided an implementation for x86_64. However, this was removed
in version 9.0.0 as it introduced severe security risks [74]. When using backward-edge CFI in x86_64
a time-of-check-to-time-of-use (TOCTOU), an attack is possible since x86_64 does not store the
return address in a register but on the stack [17, 75]. This means that only aarch64-based systems
can be protected by backward-edge CFI as the ret and call instructions operate on registers.
Conti et al. [14] show in their paper that if it is possible to leak the pointer pointing to the
ShadowCallStack, it is possible to tamper with its content. Moreover, SCS does not support a
multi-threading solution [83]. Thus, new approaches, such as Bustk [83], need to be researched.

7 RELATED WORK

In order to make forward-edge CFI more secure against the attacks mentioned in Section 6, it needs
to be combined with other protection mechanisms such as the ones trying to achieve complete
memory safety [25, 47], shadow call stacks [13], or adding runtime information to the construction
process of the CFG [27]. All three papers, [13, 25, 27], were written almost a decade ago, raising
the question of how secure today’s CFI implementations are. In Section 7.1, we summarize papers
evaluating the effectiveness of Control Flow Integrity. Afterward, we give an overview of other
memory protection mechanisms recommended to use in combination with CFI in Section 7.2.

7.1 Effectiveness of Control Flow Integrity

Muntean et al. [46] created a framework, LLVM-CFI, to evaluate the effectiveness of eight different
CFI policies, including the policies used for the adoption in GCC and LLVM, based on Tice et al.’s
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paper [76]. They measure the total number of “calltargets” after applying the different CFI policies,
making it possible to compare them easily. This new metric is called calltarget reduction (CTR).
Their results have shown that the evaluated policies are too permissive, meaning they still leave
space for an attacker to perform control flow hijacking attacks.

Li et al. [33] evaluated the twelve most common open-source implementations of CFL They
introduce two tools, CScan and CBench. The latter verifies the effectiveness of the different
implementations against common control-flow hijacking attacks. The former measures the security
boundaries of CFI implementations. They first enumerate all potential code addresses and then
verify whether the protected instructions are allowed to jump there. Their results show that ten
out of twelve contain flaws, such as introducing new unindented jump targets.

Our tool SEECFI can also be used to check that the toolchain used to generate CFI is working
correctly by verifying that CFI is present in the final binary.

7.2 Memory Protection Mechanisms

7.2.1 Data Execution Prevention (DEP). The simplest form of buffer overflows or stack smashing
consists of writing the code the attacker wants to execute (i.e., the payload) into the buffer. This
kind of attack can be prevented by making specific memory segments non-executable. Only the
segments containing the code are executable. This means any data and the stack are part of the
non-executable memory, as implemented by ExecSHIELED [30]. This is similar to the principle
of read-only permissions. This defense mechanism is called Data Execution Prevention or DEP.
Nevertheless, attackers can circumvent DEP by not writing their malicious code directly into the
buffer but by either reusing code from the program (code-reuse attack) or having the pointer point
to their own code in a memory zone marked executable. DEP is enabled on all common operating
systems by default. This can be easily verified by checking the NX/XD bit- also known as No-eXecute.

7.2.2  Stack canaries. or stack cookies are a value added after a vulnerable buffer on the stack
to prevent attacks from overwriting the return address pointer. The value of the stack canary is
checked before jumping back using the return address pointer so that a buffer overflow attack can
be detected, assuming that the attacker does not know the value. If the stack canary check fails, the
program usually terminates or crashes. STACKGUARD is a compiler extension implementing three
different kinds of stack canaries [16]: (i) random canaries, (ii) terminator canaries, and random XOR
canaries. For each execution, a new value is generated. Different implementations and integrations
exist, for instance, Microsoft Windows implementation /GC [36]. However, since stack canaries
are only safe, assuming that an attacker does not know the value, they can be bypassed by an
adversary with this knowledge. The attacker could use brute-forcing or a data leakage vulnerability
(e.g., a format string vulnerability). Moreover, it cannot prevent heap-based buffer overflows. The
presence of stack canaries in a binary can be identified in the function’s epilogue as the canary
check is inserted there.

7.2.3  FORTIFY. is a security feature that enhances the safety of standard C library functions like
strcpy, memcpy, and sprintf [56], which are prone to buffer overflows. It works by automatically
replacing these vulnerable functions with safer versions that perform additional checks at compile
time and runtime. If FORTIFY detects that a buffer might be overrun, it either stops the execution
or logs a warning, depending on the severity, thus preventing many common memory corruption
vulnerabilities. It is utilized by major operating systems such as Android [10].

7.2.4 Address-Space Layout Randomization - ASLR. mitigates code-reuse attacks by introducing
randomness into addresses of code segments [50], which means that their memory addresses are
unpredictable. In order to be able to reuse a specific code part or function of the current program, the
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attacker needs to know the memory address of these to overwrite the return address pointer with this
exact address. A more sophisticated code-reuse attack method is called return-oriented programming
(ROP). An attacker chains sequences of instructions, so-called gadgets, only reusing existing code
from the program. The attacker needs to know the exact locations of these gadgets. Therefore,
ASLR can also prevent this attack. However, ASLR can be bypassed by the same techniques as stack
canaries. ASLR is enabled by default in the kernel (2.6.16 and higher). For instance, in Linux, it is
possible to manually check the randomize_va_space file in /proc/sys/kernel.

7.2.5 Position-Independent Executable - PIE. is a security feature that allows an executable to
be loaded at random memory addresses each time it is run rather than at a fixed address. This
randomness enhances security by making it significantly more difficult for attackers to predict where
specific code or data is located in memory, a common technique for exploiting vulnerabilities. PIE
enables the entire executable, including its code, to be position-independent, similar to how shared
libraries function. When combined with Address Space Layout Randomization, PIE significantly
strengthens a system’s defenses against specific attacks, such as buffer overflows and Return-
Oriented Programming (ROP). PIE is supported by many modern operating systems, including
Linux, such as Debian [18] and Ubuntu [1], and Android [21], and is often enabled by default in the
compilation process for critical software.

7.2.6  Pointer Authentication Code - PAC. is an ARMv8.3 extension [58, 59]. In AARCH64, only
the last 40 bits of a pointer are used, which leaves the most significant 24 bits for other purposes.
Pointer Authentication uses this fact by adding a signature (= PAC) into these bits [59, 67, 72]. This
signature is verified before using the pointer. If the verification fails, the program terminates or
crashes. However, PAC is not completely secure against code-reuse attacks [82]. Apple uses Pointer
Authentication Codes (PAC) [67].

8 CONCLUSION & FUTURE WORK

We have shown that our tool SEECFI can determine whether a binary was compiled using forward-
and/or backward-edge CFI. Furthermore, it can differentiate between single-module and multi-
module CFI. In total, we applied SEECFI to 102 different system images, 51 Android and 51 Linux
images, to identify forward- and backward-edge CFI deployment throughout versions and times. We
considered the Samsung, Google, and GrapheneOS releases focusing on privacy and security. The
deployment of backward-edge CFI is generally higher than forward-edge CFL. We then discussed
the different reasons explaining the results of our experiments.

In summary, the adoption of forward-edge CFI is not significantly increasing (always <1%)
within Linux (Debian & Ubuntu) systems, indicating that it is unlikely to happen in the future. In
Android, on the other hand, the deployment increases over time, ending at ~28.7% for Android
13. However, Android started moving to memory-safe languages, making CFI redundant in the
context of memory-safe languages generating native code. Nevertheless, existing code written in
memory-unsafe languages will still rely on CFI’s protection in the future.

SEECFI enables determining which binaries have been compiled in a system with CFIL. This can be
helpful for system developers to decide which binaries to focus on first when fixing vulnerabilities,
as binaries without CFI make a better target. This assumption is reasonable as we have explained
(Section 2 and Section 6) how CFI can significantly increase the complexity of possible attacks.

In the future, we plan to add the detection of Clang’s Pointer Authentication Code used by Apple
and Windows’ CFI implementation called Control Flow Guard to SEECFIL
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A HOW SEECFI WORKS

Figure 8 shows the structure of SEECFI when analyzing a single binary file. We used this for
debugging and to verify the results of SEECFI (see Section 5.2). First SEECFI checks if the binary
was compiled using the cross-DSO flag (multi-module CFI) based on Algorithm 1.If SEECFI was
invoked using the -s flag, the binary is always checked for the pattern of single-module CFI
using Algorithm 2. Otherwise, SEECFI only performs this analysis if the multi-module check returns
false. In the case of true, the ShadowCallStack check, as described in Algortihm 3, is performed
immediately. The results are printed after all required checks are finished. It is possible to use the
-d flag to dump the corresponding assembly code of all single-module CFI and ShadowCallStack
occurrences into a separate text file.

Multi-module CFI

IDPUI True & [-s]
| False
V., i

f Single-module CFI True
\? True | False
I
|

ShadowCallStack

Output

Name: ..
Multi_CFI:
[True|False]

Single_CFI:
[True|False]

ShadowCallstack:
[True|False]

Fig. 8. Analysis structure for a single binary file (used for debugging and verification purposes)
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Android Debian Ubuntu
Year . . .

Versions Version Version
2009 5.0/5.1
2011 6.0.0 /6.0.1
2012 12.04/ 12.10
2013 44 7.0.0/7.11.0 13.04 / 13.10
2014 14.04 / 14.10
2015 8.0.0/8.11.0 15.04 / 15.10
2016 16.04 / 16.10
2017 7.1.0 9.0.0/9.13.0 17.04 / 17.10
2018 (8.1)/9 18.04 / 18.10
2019 10 10.0.0 / 10.13.0 19.04/ 19.10
2020 11 20.04 / 20.10
2021 12 & 12L 11.0.0/11.5.0 21.04/ 21.10
2022 13 22.04/22.10

Table 1. Release years of Android, Debian, and Ubuntu versions
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OS Version Vendor Device Name

4.4 KRT16M Android (Google) Nexus 5 (GSM/LTE) hammerhead-krt16m

7.1.0 NDE63H Android (Google) Pixel XL marlin-nde63h

9.0.0 PD1A.180720.030 Android (Google) Pixel 3 blueline-pd1a.180720.030

9.0.0 PD1A.180720.030 Android (Google) Pixel 3 XL crosshatch-pd1a.180720.030

9.0.0 PD2a.190115.029 Android (Google) Pixel 3a sargo-pd2a.190115.029

9.0.0 PD2a.190115.029 Android (Google) Pixel 3a XL bonito-pd2a.190115.029

10.0.0 QD1a.190821.007 Android (Google) Pixel 4 flame-qd1a.190821.007

10.0.0 QD1a.190821.007 Android (Google) Pixel 4 XL coral-qd1a.190821.007

10.0.0 QD4A.200317.027 Android (Google) Pixel 4a sunfish-qd4a.200317.027

11.0.0 RD1A.200810.022.A4 Android (Google) Pixel 4a (5G) bramble-rd1a.200810.022.a4

11.0.0 RD1A.200810.022.A4 Android (Google) Pixel 5 redfin-rd1a.200810.022.a4

11.0.0 RD2A.210605.007 Android (Google) Pixel 5a barbet-rd2a.210605.007

12.0.0 SD1A.210817.015.A4 Android (Google) Pixel 6 oriole-sd1a.210817.015.a4

12.0.0 SD1A.210817.015.A4 Android (Google) Pixel 6 Pro raven-sd1a.210817.015.a4

12.1.0 SD2A.220601.003 Android (Google) Pixel 6a bluejay-sd2a.220601.003

13.0.0 TD1A.220804.009.A2 Android (Google) Pixel 7 panther-td1a.220804.009.a2

13.0.0 TD1A.220804.009.A2 Android (Google) Pixel 7 Pro cheetah-td1a.220804.009.a2
J260GDDS9AVK1_ J260GDDS9AVK1_

8.1.0 1260GODMOAVK2 Samsung Galaxy ]2 Core (SM-]J260G) 1260GODMOAVK2 INS
G950USQUSDUD3_ G950USQUSDUD3_

200 GosouoyNgDUD3  Samsung Galaxy 58 (SM-G950U) G950UOYNSDUD3_TMB
G960USQUIFVB2_ G960USQUIFVB2_

1000 GogouoyNopvBz ~ Samsung Galaxy 59 (SM-G960U) G960UOYN9FVB2_TMB
G973USQU5GUCG_ G973USQU5GUCG_

100 GorspoyNsGUCG  SAmsung Galaxy $10 (SM-G973U)  (207315,0yNSGUCG_TMB
G981USQU2EULH_ G981USQU2EULH _

1200 GogUOYN2EULH  SAmsung Galaxy 520 (SM-G981U) 501 JOYN2EULH TMB

Table 2. Google and Samsung images (used in Sections 4.2.2 and 4.2.4)
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Distribution OS Version Image

Debian 5.0 Gnome debian-live-500-amd64-gnome-desktop.iso
Debian 5.0 Standard debian-live-500-amd64-standard.img
Debian 5.10 Gnome debian-live-5010-amd64-gnome-desktop.iso
Debian 5.10 Standard debian-live-5010-amdé64-standard.iso
Debian 6.0 Gnome debian-live-6.0.0-amd64-gnome-desktop.img
Debian 6.0 Standard debian-live-6.0.0-amd64-standard.img
Debian 6.0.10 Gnome debian-live-6.0.10-amd64-gnome-desktop.iso
Debian 6.0.10 Standard  debian-live-6.0.10-amd64-standard.iso
Debian 7.0.0 Gnome debian-live-7.0.0-amd64-gnome-desktop.iso
Debian 7.0.0 Standard debian-live-7.0.0-amd64-standard.iso
Debian 7.11 Gnome debian-live-7.11.0-amd64-gnome-desktop.iso
Debian 7.11 Standard debian-live-7.11.0-amd64-standard.iso
Debian 8.0.0 Gnome debian-live-8.0.0-amd64-gnome-desktop.iso
Debian 8.0.0 Standard debian-live-8.0.0-amd64-standard.iso
Debian 8.11 Gnome debian-live-8.11.0-amd64-gnome-desktop.iso
Debian 8.11 Standard debian-live-8.11.0-amd64-standard.iso
Debian 9.0.0 Gnome debian-live-9.0.0-amd64-gnome.iso

Debian 9.13.0 Gnome debian-live-9.13.0-amd64-gnome.iso
Debian 10.0.0 Gnome debian-live-10.0.0-amd64-gnome.iso
Debian 10.0.0 Standard  debian-live-10.0.0-amd64-standard.iso
Debian 10.13.0 Gnome  debian-live-10.13.0-amd64-gnome.iso
Debian 10.13.0 Standard  debian-live-10.13.0-amdé64-standard.iso
Debian 11.0.0 Gnome debian-live-11.0.0-amd64-gnome.iso
Debian 11.0.0 Standard  debian-live-11.0.0-amd64-standard.iso
Debian 11.5.0 Gnome debian-live-11.5.0-amd64-gnome.iso
Debian 11.5.0 Standard  debian-live-11.5.0-amd64-standard.iso
Ubuntu 12.04.4 ubuntu-12.04.4-desktop-amd64.iso

Ubuntu 12.10 ubuntu-12.10-desktop-amd64.iso

Ubuntu 12.10 mac ubuntu-12.10-desktop-amd64+mac.iso
Ubuntu 13.04 ubuntu-13.04-desktop-amd64.iso

Ubuntu 13.04 mac ubuntu-13.04-desktop-amd64+mac.iso
Ubuntu 13.10 ubuntu-13.10-desktop-amd64.iso

Ubuntu 13.10 mac ubuntu-13.10-desktop-amd64+mac.iso
Ubuntu 14.04.6 ubuntu-14.04.6-desktop-amd64.iso

Ubuntu 14.10 ubuntu-14.10-desktop-amd64.iso

Ubuntu 15.04 ubuntu-15.04-desktop-amd64.iso

Ubuntu 15.10 ubuntu-15.10-desktop-amd64.iso

Ubuntu 16.04.7 ubuntu-16.04.7-desktop-amd64.iso

Ubuntu 16.10 ubuntu-16.10-desktop-amd64.iso

Ubuntu 17.04 ubuntu-17.04-desktop-amd64.iso

Ubuntu 17.10.1 ubuntu-17.10.1-desktop-amd64.iso

Ubuntu 18.04.6 ubuntu-18.04.6-desktop-amd64.iso

Ubuntu 18.04 ubuntu-18.04-desktop-amd64.iso

Ubuntu 18.10 ubuntu-18.10-desktop-amd64.iso

Ubuntu 19.04 ubuntu-19.04-desktop-amd64.iso

Ubuntu 19.10 ubuntu-19.10-desktop-amd64.iso

Ubuntu 20.04.5 ubuntu-20.04.5-desktop-amd64.iso

Ubuntu 20.10 ubuntu-20.10-desktop-amd64.iso

Ubuntu 21.04 ubuntu-21.04-desktop-amd64.iso

Ubuntu 21.10 ubuntu-21.10-desktop-amd64.iso

Ubuntu 22.04.1 ubuntu-22.04.1-desktop-amd64.iso

Ubuntu 22.10 ubuntu-22.10-desktop-amd64.iso

Table 3. Debian and Ubuntu images (used in Section 4.2.2)
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OS Version Vendor Device Name

. blueline-sp1a.210812.016.c2-
12.0.0 SP1A.210812.016.C2 Google Pixel 3 factory-fa981d87

. crosshatch-sp1a.210812.016.c2-
12.0.0 SP1A.210812.016.C2 Google Pixel 3 XL factory-27f59137

. sargo-sp2a.220505.008-
12.1.0 SP2A.220505.008 Google Pixel 3a factory-071¢368a

. bonito-sp2a.220505.008-
12.1.0 SP2A.220505.008 Google Pixel 3a XL factory-db19d2aa

. flame-tp1a.221005.002.b2-
13.0.0 TP1A.221005.002.B2 Google Pixel 4 factory-38e4f49a

. coral-tp1a.221005.002.b2-
13.0.0 TP1A.221005.002.B2 Google Pixel 4 XL factory-dboob1fs

. sunfish-tq2a.230405.003-
13.0.0 TQ2A.230405.003 Google Pixel 4a factory-1ch87bfb

. bramble-tq2a.230405.003-
13.0.0 TQ2A.230405.003 Google Pixel 4a (5G) factory-a854ba24

. redfin-tq2a.230405.003-
13.0.0 TQ2A.230405.003 Google Pixel 5 factory-e85b956b

. barbet-tq2a.230405.003-
13.0.0 TQ2A.230405.003 Google Pixel 5a factory-8co4f18d

. oriole-tq2a.230405.003.e1-
13.0.0 TQ2A.230405.003.E1 Google Pixel 6 factory-e7997d5a

. raven-tq2a.230405.003.e1-
13.0.0 TQ2A.230405.003.E1 Google Pixel 6 Pro factory-6cadf208

. bluejay-tq2a.230405.003.e1-
13.0.0 TQ2A.230405.003.E1 Google Pixel 6a factory-f21956ab

. panther-tq2a.230405.003.e1-
13.0.0 TQ2A.230405.003.E1 Google Pixel 7 factory-ae8e7das

. cheetah-tq2a.230405.003.e1-
13.0.0 TQ2A.230405.003.E1 Google Pixel 7 Pro factory-1f04869e
12.0.0 SP1A.210812.016.C2 GrapheneOS Pixel 3 blueline-factory-2023020600
12.0.0 SP1A.210812.016.C2 GrapheneOS Pixel 3 XL crosshatch-factory-2023020600
12.1.0 SP2A.220505.008 GrapheneOS Pixel 3a sargo-factory-2023020600
12.1.0 SP2A.220505.008 GrapheneOS Pixel 3a XL bonito-factory-2023020600
13.0.0 TP1A.221005.002.B2 GrapheneOS Pixel 4 flame-factory-2023041100
13.0.0 TP1A.221005.002.B2 GrapheneOS Pixel 4 XL coral-factory-2023041100
13.0.0 TQ2A.230405.003 GrapheneOS Pixel 4a sunfish-factory-2023041100
13.0.0 TQ2A.230405.003 GrapheneOS Pixel 4a (5G) bramble-factory-2023041100
13.0.0 TQ2A.230405.003 GrapheneOS  Pixel 5 redfin-factory-2023041100
13.0.0 TQ2A.230405.003 GrapheneOS Pixel 5a barbet-factory-2023041100
13.0.0 TQ2A.230405.003.E1 GrapheneOS Pixel 6 oriole-factory-2023041100
13.0.0 TQ2A.230405.003.E1 GrapheneOS Pixel 6 Pro  raven-factory-2023041100
13.0.0 TQ2A.230405.003.E1 GrapheneOS Pixel 6a bluejay-factory-2023041100
13.0.0 TQ2A.230405.003.E1 GrapheneOS Pixel 7 panther-factory-2023041100
13.0.0 TQ2A.230405.003.E1 GrapheneOS Pixel 7 Pro cheetah-factory-2023041100

Table 4. GrapheneOS and corresponding Google images (used in Section 4.2.3 and 4.2.4)
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