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Abstract—We discuss the capability of a new feature set

for malware detection based on potential component leaks

(PCLs). PCLs are defined as sensitive data-flows that involve

Android inter-component communications. We show that PCLs

are common in Android apps and that malicious applications

indeed manipulate significantly more PCLs than benign apps.

Then, we evaluate a machine learning-based approach relying

on PCLs. Experimental validation show high performance with

95% precision for identifying malware, demonstrating that PCLs

can be used for discriminating malicious apps from benign apps.

By further investigating the generalization ability of this

feature set, we highlight an issue often overlooked in the

Android malware detection community: Qualitative aspects of

training datasets have a strong impact on a malware detector’s

performance. Furthermore, this impact cannot be overcome by

simply increasing the Quantity of training material.

I. INTRODUCTION

Recent statistics from Google show that 1.5 million Android
devices are activated every day [12], running a wide variety of
application in many different usage scenarios. The GooglePlay
Store1 alone currently hosts about 1.5 millions apps [5],
some of which are known to behave maliciously [3]. The
November 2014 Threats Report [30] from McAfee states that
the total number of mobile malware samples exceeded five
million, growing by 112% in one year. Indeed, mobile devices
are a popular target for attackers, and app markets are still
abused by malware developers for spreading their malicious
apps. Consequently, the security guard of such markets have
become an essential challenge for both end users and market
maintainers.

Machine learning techniques, by allowing to sift through
large sets of apps to detect malicious apps, appear to be
promising for large-scale malware detection and eventually
to keep malicious apps from entering app markets [2]. State-
of-the-art machine learning approaches for Android malware
detection mainly differ in the feature sets that are consid-
ered for training the classifiers. For example, Canfora et
al. [9] rely on system calls and permissions while Gascon
et al. [16] use function call graph properties. Other examples
of recurrent feature sets include Java code properties, Intent
Filter information, strings, etc. Recently, MUDFLOW [8] has
proposed to extract behavioral features by taking into account
sensitive data flows in Android apps to identify malware.
Although most approaches from the literature exhibit high
performance results, there are few cases where authors assess

1https://play.google.com/store

the generalization of such results. In particular, we question
the extent of dependency between the training data and the
yielded classifiers. We advocate, through an investigation into
an example of a new feature set, that the assessment of feature
sets must dig into the composition of training datasets.

We study the capability of specific sensitive data-flow
features to be discriminative in Android malware detection as
in MUDFLOW. Contrary to MUDFLOW, for which the source
and sink of the data-flow are necessarily within a single com-
ponent, we consider data-flows that may led to leaks between
two components such as data-flow coming from a source and
going out of the component without knowing yet if the related
data will go to a sink. Indeed, these potential component
leaks (PCLs) are meaningful characteristics of malware since
researchers have shown that the inter-component communica-
tion (ICC) mechanism introduces a lot of vulnerabilities (e.g.,
Activity Hijacking) [11], [32].

In our previous work, we have developed PCLeaks [25],
a tool for detecting potential component leaks involving two
components. For the purpose of this study, we have extended
PCLeaks to take into account the case where more than two
components are involved in the leak (e.g., one component is
used as a bridge component between two others).

This paper reports on an empirical investigation into po-
tential component leaks in Android apps. Eventually, we
assess the relevance of potential component leaks as features
for machine learning-based Android malware detection. For
instance, we experimentally check whether the performance
achieved with these features can be generalized to different
clusters of Android apps.

The contributions of this paper are as follows:
• We present a discussion on the different types of potential

component leaks in Android apps.
• We empirically investigate the distribution of potential

component leaks in malicious and benign app datasets.
• We further investigate the discriminative power of PCL-

based features for machine learning-based malware de-
tection.

This paper is an extension of a short paper published at
the International Conference on Software Quality, Reliability
& Security [22]. In the previous version, we introduced PCLs
into a new feature set for machine learning-based malware
detection. Experiments show that PCLs (as features) achieve
high performance, demonstrating that PCLs can be used for
discriminating malicious apps from benign apps. Now, we



would like to check whether the high performance achieved is
contributed by the whole training feature set or mainly by a
subset of the training set. To that end, in this extended version,
we perform an investigation on the generalization of the PCLs-
based feature set.

The remainder of this paper is organized as follows. Sec-
tion II provides preliminary materials about Android ICC
and PCLs. Then, we describe our research questions and
empirical study methodology in Section III. Next, we present
the experimental setup in Section IV and our empirical results
in Section V. After discussing threats to validity in Section VI
and relating to existing work in Section VII, we conclude with
directions for future research in Section VIII.

II. PRELIMINARIES

In this section, we provide necessary background informa-
tion on Android and on the process for identifying potential
component leaks.

A. Inter-Component Communication in Android
Android apps are made of components [4], which are

implemented as special Java classes. There are four categories
of components: 1) Activity, which implements user interfaces;
2) Service, which implements background tasks; 3) Content
Provider, which implements Android specific databases; and
4) Broadcast Receiver, which implements event notifications.
Any pair of components, from the same category or from
different categories, can exchange data and invoke each other
using the Inter-Component Communication (ICC) mechanism.
An ICC is typically triggered by one of several specific
Android methods which take as parameter a special kind of
object, called Intent. This Intent specifies the target
component(s), either explicitly, by setting the name of the
target components class, or implicitly, by setting the action,
the category and the input data. In order to receive implicit
Intents, target components need to declare their capabilities
through an Intent Filter so that the Android system may
match them when requested by a given component.

In recent works, Chin et al. [11] and Octeau et al. [32] have
shown that the ICC mechanism is an opportunity for exploiting
vulnerabilities in Android apps. In this paper, we consider such
vulnerabilities by investigating ICC-based information leaks.

B. Potential Component Leaks
In a previous work [24], we have shown that ICCs are used

to leak sensitive data across components. Any component can
potentially participate in a leak, for instance by retrieving a
piece of sensitive information, by sending this information, or
simply by playing the role of a bridge between two other
components. Thus when performing static analysis of one
single component, some of the data-flow paths, leaking data
across the boundary of the component can be identified. In this
paper, those data-flow paths are called Potential Component
Leaks (PCLs). A PCL is not per se a leak but it might be
exploited by other components and eventually contribute to a
leak of private data.

Fig. 1 illustrates four different scenarios of data leakages,
three of which represent PCLs. In this figure, (A) represents
the “traditional” intra-component privacy leaks, which have
been well studied in the literature [7], [17], [19]. In the present
study, we do not consider such leaks since they are fully
contained in one single component—i.e. a piece of data is
both obtained and leaked inside one component—and hence
do not involve any Inter-Component Communication. In (B),
the leaked data is exfiltrated by the component, while in (C)
the data is obtained from the component. Finally, in (D), the
leaked data travels through the component which is merely
used as a bridge. From these schematic examples, we see that
a component is involved in a PCL either by providing an entry-
point or by providing an exit-point for leaking the data.

(A)

(B)

(C)

(D)

entry-point

exit-point

source
sink

Legend

Fig. 1: Examples of leak schemes including “traditional” intra-
component leaks (A) and PCLs ((B), (C) and (D)).

1) Characterization of Entry and Exit points: Unlike tradi-
tional Java apps, which come with a single entry point (main
method), an Android app includes several components, each
of which may contain several entry-points for launching the
app. Because components can use different methods to call
out other components, each component may contain multiple
exit-points.

We now detail the criteria for identifying such entry-points
and exit-points.

Entry-points: Entry-points are methods where data can be
transferred into a component, through parameters, between
components. In our study, we consider the following methods:

• Any method such as getStringExtra() that obtains
data from Intents (or Bundles).

• Any lifecycle method that takes an Intent as a parameter2.
• Any method that obtains data from ContentValues 3.
• Any method of ContentResolver such as query()

that acquires data from other components (or apps).
Exit-points: An exit-point is a method call through which

data can be transferred outside a component. For example,
the startActivity() method can be used to trigger data
exchange when one component launches another. We consider
all such ICC methods as exit-points. We also take into account
such methods of ContentResolver such as insert()
that are capable to transfer data to ContentProviders.

2 It is not necessary for entry-points to get data from Intents since Intents
can be directly leaked through components, e.g., type (D) in Fig. 1

3Like Intents, ContentValues are used to exchange data between
components. However, they are used to transfer data to ContentProviders
while Intents are used for the other three components.



2) PCL types: In this section, we introduce the three types
of PCLs that are investigated. An example of PCL is shown
in Fig. 2, where a sensitive data (device id) is collected in
a first component (1) and leaked through an ICC method to
another component (2) which simply forwards it to a third
component (3) where it is eventually leaked outside the device
through SMS. To detect such leaks, PCLeaks performs static
taint analysis on each app and tracks the sensitive data across
components from its source to a sink.

 

1:onCreate(Bundle b) {
2: id = getDeviceID();
3: Intent i1 = new Intent(action1);
4:  i1.putExtra("key", id)
5:  sendBroadcast(i1)
6:}

11:onReceive(Context c, Intent i2) {
12: Intent i2 = new Intent(action2);
13: s2 = i2.getStringExtra("key");
14: i2.putExtra("key2", s2);
15: c.startService(i2);
16:}

21:onStartComand(Intent i3, ) {
22: s3 =i3.getStringExtra("key");
23: sendSMS(s3)
24:}

  

APP1 : Activity APP2 : Receiver APP3 : Service

getDeviceID

sendSMS(1)
(3)

(2)

ICC1 ICC2

Fig. 2: An example of PCLs.

Potential Active Component Leak (PACL). We define a
PACL as a taint flow path starting from a source (defined as
calls into resource methods returning non-constant values into
the application code [35]) and ending with an exit-point. Such
PCLs are referred to as “active”, as the involved component is
actively leaking sensitive data that it collected itself to other
components (cf. (1) in Fig. 2).

Potential Bridge Component Leak (PBCL). We define
a PBCL as a taint flow path starting from an entry-point
and ending with an exit-point. Such PCLs are referred to as
“bridge”, as the involved component is transferring sensitive
data collected by a different component to another component
(cf. (2) in Fig. 2).

Potential Passive Component Leak (PPCL). We define a
PPCL as a taint flow path starting from an entry-point and
ending with a sink (defined as calls into resource methods
accepting at least one non-constant data value from the appli-
cation code as parameter, if and only if a new value is written
or an existing one is overwritten on the shared resource (e.g.,
GSM network) [35]). Such PCLs are referred to as “passive”,
as the involved component is passively leaking sensitive data
collected by other components (cf. (3) in Fig. 2).

Note that the Android system provides two types of mech-
anism to protect components of being misused by other com-
ponents: the export attribute and permissions. i) The export
attribute is used to express the fact that other components
can “access” the exported one. Thus, only exported compo-
nents can potentially leak private data (PPCL and PBCL).
ii) Permissions can be used at component level. When a
component is protected by a permission, the apps that want
to access this component must have first requested, and be
granted this permission. In our detection of PCLs, we take
into account these two types of mechanism, for instance by
checking whether the export attribute is used or not.

III. RESEARCH QUESTIONS & MEASUREMENTS

In this section, we provide details on the metrics and
assessment methods that we use in this study as well as the
research questions that we investigate.

A. Research Questions
In this study, we address the following research questions:
• RQ1: Are PCLs common in Android apps?
• RQ2: Is there a significant difference in the presence of

PCLs between malicious and benign apps? If so, is this
difference similar for all PCL types?

• RQ3: Can PCLs be used as features for machine learning-
based malware detection?

• RQ4: Can we generalize our findings on potential mali-
cious use of PCLs?

B. Metrics and Assessment methods
We now briefly present some methodologies we use in this

empirical study. In particular, we provide details on how to
interpret the data (e.g., boxplot and MWW test results).

Boxplot. Boxplots are a convenient way to visually illustrate
groups of numerical data. As shown in Fig. 3, a boxplot is
made up of 5 main horizontal lines. From left to right, they are
the least value (MINIMUM), the line where 25% of data points
are below (LOWER QUARTILE), the middle of the dataset
(MEDIAN), the line where 25% of data points are above
(UPPER QUARTILE), and the greatest value (MAXIMUM).
Such data points that out of the range of the first and fifth line
are outliers. In this paper, we use the R statistical analysis
tool to draw boxplots. In order to highlight the difference
between median values, we have disabled outliers and for some
boxplots we have cut off their upper whiskers.

MINIMUM

UPPER QUARTILE

MEDIAN

OUTLIER

MAXIMUM

LOWER QUARTILE

Fig. 3: An example of boxplot.

Mann-Whitney-Wilcoxon (MWW) test. The MWW test
is a non-parametric statistical hypothesis test that assesses the
statistical significance of the difference between the distribu-
tions in two datasets [29]. Given two independent samples
x and y, of size n1 and n2 respectively, the formula for
computing the Mann-Whitney U for x is: U = n1n2 +
n1(n2+1)

2 �T . [33]. Once the U value is computed it is used to
determine the p-value. Given a significance level ↵ = 0.001,
if p-value < ↵, then the null hypothesis is rejected by the test,
indicating that the two datasets have different distributions at
the significance level of ↵ = 0.001. In other words, there is
one chance in a thousand that this is due to a coincidence.

10-fold cross validation. Cross validation is a validation
technique, which is usually used to evaluate how the results



of a statistical analysis will generalize to an independent
data set. Mainly, it is used to estimate how accurately a
predictive model will perform in practice [21]. The 10-fold
cross validation consists in randomly partitioning the given
data samples into 10 sub-samples of equal size. Of the 10
sub-samples, 9 of them are used to train a classification model,
while the left one is used as the validation data for testing the
model. The cross-validation process is then repeated 10 times
in which each sub-sample is used exactly once as the validation
data. The 10 results from the folds can then be averaged to
produce a single estimation.

IV. EXPERIMENTAL SETUP

In this section we detail the settings used in PCLeaks to
yield PCLs. We also present the dataset for the experiments
as well as the construction of the feature vectors for machine
learning experiments.

A. PCLeaks Settings

In this study, all PCLs are detected by a new version of
PCLeaks [25] which has been extended to detect PBCLs as
well. PCLeaks uses a static taint analysis approach to track
data paths from sources to sinks. We discuss in this section
how such sources and sinks are determined in our work.

Sensitive sources and sinks. The key idea behinds static
taint analysis is to identify a path that starts from a sensitive
source and ends with a sensitive sink. In this study, the sensi-
tive source and sink we use are extracted by SUSI [35], which
automatically classifies all methods in the whole Android API
as source, sink or neither. In Android 4.2, SUSI yields 18,076
source methods and 8,314 sink methods. Theoretically, there
are 150,283,864 (18,076 * 8,314) different taint paths (the
source to sink pairs) PCLeaks can report. Instead of identifying
PCLs by a pair of methods, we group methods with similar
functionality into categories (e.g., group methods Log.e() and
Log.v() into category LOG) and use this category in lieu of
the fully-qualified method name. This categorization allows to
vastly reduce the number of different identifying pairs down
to a more manageable value. We use the categories provided
by SUSI for our study. Note that we have ignored methods
that are classified as NO_CATEGORY by SUSI except for
methods related to shared preferences since they are well
used in Android apps, for which we create a new category
(SHARED_PREFERENCES). Besides, we create four new cat-
egories (one for each component type) to further break down
the behavior of potential component leaks.

Analysis Settings. As mentioned in [25], PCLeaks lever-
ages the static taint analysis tool FlowDroid to identify data
flows in Android apps. Because FlowDroid analyzes a whole
Android app and aims to provide highly precise results, it
usually takes a lot of time and resources to analyze an app. In
favor of a faster analysis, we use the same FlowDroid settings
as MUDFLOW [8] chooses (Explicit flow only, Disable flow-
sensitive alias search, Maximum access of path length of 3,

No-Layout mode and No static fields4) , which sacrifices some
amount of precision for speed and memory. As a result, the
detected potential component leaks may have false positives
as well as false negatives. However, our goal in this paper is
not to prove the presence or absence of flows but to study the
distribution difference of potential component leaks between
malware and goodware.

Advertisement Libraries. Most Android apps are free, they
usually use advertisement to get profit, which are delivered
through specific advertisement libraries. These libraries access
sensitive data such as the unique device id to deliver per-
sonalized advertisements. However, the potential component
leaks (flows) introduced by advertisement libraries are separate
from the actual app code. As shown in MUDFLOW [8],
advertisement libraries are frequently used and their flows
(PCLs) thus become “normal”, diluting the impact of actual
app flows. Therefore, we follow MUDFLOW’s assumption
that advertisement libraries are trustworthy and ignore all the
PCLs taking place in advertisement libraries, allowing our
study to focus on the actual app PCLs. We use the same list
of libraries MUDFLOW uses to exclude PCLs.

B. Datasets

For the purpose of our experiments, we collected a dataset
of Android apps from Android markets including the official
GooglePlay store. For each app, we also retrieved analysis
results of anti-virus products hosted by VirusTotal5.

Then, based on the results of VirusTotal, we build two
disjoint sets: One set, noted M (for Malware), containing only
malicious apps, and G (for Goodware) containing only benign
apps. Each dataset contains 5,000 apps which we evaluate with
PCLeaks.

All our experiments are performed on the UL HPC plat-
form [36]. For each Android app, we allocate one core for
PCLeaks to analyze it. The Java heap is set to 8 gigabytes and
the time out is set to 12 hours. Recall that we start with two
data sets containing 5,000 apps each for this study. Because
some of them fail (e.g., exception or time out) or do not
contain any PCLs, the result of the PCL extraction process
contain 2,822 goodware and 3,785 malware, each containing
at least one PCL.

C. Feature Set

One goal of this study is to assess if PCLs can be used
as features for machine learning-based malware detection to
suggest potential malicious apps. Machine learning algorithms
cannot directly work on Android apps. Each app must be
represented by a vector of properties, called a feature vector
in the context of machine learning. In this study, our feature
vectors are built with the results (PCLs) of PCLeaks, after
analyzing all the apps in our dataset. Let L be the feature

4Explanations for these FlowDroid settings can be found at https://github.
com/secure-software-engineering/soot-infoflow-android/wiki

5we consider an app is malicious if at least 20 different anti-virus products
detect it as such. An app is considered benign, or Goodware only if it is not
detected by any anti-virus product.



vectors we build, given an app a, for each PCL li 2 L,
we value it as either 0 for the case that a does not contain
li or the actual number of li reported by PCLeaks. Recall
that we use categorizations instead of methods to describe
the detected taint flows (PCLs). Thus, our feature set is
made of category pairs. Taking the code in Fig. 2 as an
example, we are able to collect the following features:
UNIQUE IDENTIFIER ! RECEIV ER (APP1)
RECEIV ER ! SERV ICE (APP2)
SERV ICE ! SMS MMS (APP3)

V. EMPIRICAL RESULTS

We report in this section the results of our investigations to
answer the different research questions outlined in Section III.

A. Occurrence of PCLs in Android Apps
Fig. 5a plots the distribution of the number of PCLs per app

from our dataset. The median value indicates that half of the
apps contain at least 20 PCLs. Excluding outliers, which are
automatically identified by the R statistics tool, the number of
PCLs per app ranges from 0 to about 100. Because the various
apps in our dataset are not equivalent in terms of code size and
in terms of components, we further investigate the distribution
of PCLs by normalizing the result in those two dimensions.
Fig. 5b depicts the distribution of PCLs per 100 kilobyte of
bytecode. The median number of PCLs per 100kB is around
3, while the maximum is slightly above 20. Finally, Fig. 5c
presents the number of PCLs per component in the apps of
the datasets. Components have a median value of 1 PCL, with
a maximum of 6 PCLs per component.
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Fig. 5: Distribution of PCLs in Android apps: un-normalized (per app)
and normalized densities (per 100kB bytecode and per component)
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RQ1:Although PCLs are common in our datasets,
their distribution is uneven across apps and across

components.

B. Distribution of PCLs between malicious and benign apps
Following the findings on the occurrence of PCLs in An-

droid apps in general, we further investigate whether the distri-
bution of PCLs varies between malicious and benign apps. We
therefore separately show in Fig. 4a the boxplots representing
the number of PCLs for the malware and goodware datasets.
The median values indicate that in general half of malware
apps contain each more than 22 PCLs while this median

value amounts to 8 for in goodware apps. To assess the
significance of this difference we perform an MWW test which
was successful (with p-value < 0.001).

We then explored whether this difference is similar for all
types of PCLs considered in this study. The results show
that PACLs, depicted in Figure 4b, are the most unequally
distributed between malware and goodware. The median value
for PACLs is 15 for malicious apps and only 1 for benign apps.
The differences, according to MWW test, although statistically
significant, are less important for PPCLs (Figure 4c, median
values 4 for malware and 2 for goodware), and PBCLs
(Figure 4d, median values 2 for malware and 0 for goodware).

We also explored the categories of leaks identified by
PCLeaks and their distribution among the apps. In total,
from all the dataset apps, PCLeaks identified 501,320 PCLs.
These instances of PCLs can be categorized based on the
types of source and sinks involved as well as the type of
component involved. Thus, we have identified 74 distinct PCL
categories. The top 20 PCL categories, i.e., those with the
largest numbers of instances, are depicted in Fig. 6. From
this figure, we note that in almost all categories, malicious
apps contain more PCLs than benign apps. However, Activity-
related PPCLs (e.g., Activity ! Shared preferences and
Activity ! Log) are more present in the goodware dataset
than in the malware dataset. We note that this kind of potential
leaks are user-aware leaks since the source starts from the user
interface (i.e., Activity) and the leaked data is actually written
to disk.�

�

⌧

�

RQ2:Malicious apps contain significantly more
PCLs than benign apps. This difference is most

important in the case of Potential Active Component
Leaks, i.e., where components actively forward data

that they collect outside to other components

C. Malware identification

Empirical findings from previous section on the presence of
PCLs in malware and goodware datasets suggest that PCLs can
be used to discriminate malicious apps from benign apps. In
this section, we investigate this possibility by implementing
and assessing a machine learning-based malware detection
approach leveraging PCLs as classification features.

We perform extensive experiments, tuning different ma-
chine learning approach parameters, to gather insights for the
practical use of PCLs as features. In particular we evaluate
the performance of the features in combination with different
machine learning classification algorithms. We also consider
the impact of class imbalance in the dataset by varying
the ratio between malware and goodware in the validation
experiments.

Effect of Classification Algorithm. Fig. 7 plots the ROC
graphs for the performance of the malware detector with differ-
ent classification algorithms. All five algorithms yield an Area
Under Curve (AUC) above 0.8, indicating good performance.
The RandomForest algorithm achieves the best performance,
although the overall performance of all algorithms are similar.
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Fig. 4: PCL distribution across Malware and Goodware datasets

Fig. 6: The top 20 PCLs we detect in our experiments (same number of apps for each set).

This result suggests that the PCL-based feature set is not
tailored for a specific algorithm.
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Fig. 7: ROC curves of different algorithms.

Malware/Goodware Ratio. We investigate in detail how
class imbalance in the constructed dataset threatens the per-
formance of PCL-based malware classification. To this end,
we customize three datasets, composed of 2,400, 3,600 and
4,800 apps with a malware/goodware ratio of 1, 2 and 3
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Fig. 8: Distribution of F-Measure for different Malware/Goodware
ratios.

respectively. Fig. 8 depicts the distribution of F-measure for
these different malware/goodware ratios. We note that the
performance decreases with the ratio of malware in the set.
Such a finding was already shown in Allix et al.’s large scale
empirical study with a different feature set [2].◆

✓
⇣
⌘

RQ3:PCLs constitute good features for
discriminating malicious apps from benign apps in a
Machine learning-based malware detection scheme.



D. Generalization

Generalization is an important criterion for assessing a
machine-learning approach, whose validity could be threat-
ened by various steps of the process. For example, features
considered may be uncommon in the datasets, or the datasets
considered may not be representative of the universe of the
relevant artifacts. Unfortunately, the generalization question is
often overlooked. In this section we evaluate to what extent
PCL-based features can be generalized for detecting malware
in the wild (i.e., beyond the scope of the composition of
our current experiment datasets) in order to draw insights for
specifying the context in which PCLs can be leveraged to
construct a feature set for malware detection.

In particular, we investigate whether the performance
yielded by the PCL-based classifiers is contributed by the
whole training dataset or only by a specific subset. In other
words, we explore the possible relationship of PCL-based
features with a subset of apps. Thus, we propose to cluster our
datasets into different subsets in which apps share similar char-
acteristics. To that end, we consider application permissions
as a clustering criterion. Since PCLs are inherently related to
sensitive data which is usually protected by a permission, our
clustering scheme may cluster apps6 into subsets that exhibit
distinct patterns of PCL usage.

Fig. 9 presents an overview of the experimental process that
we have setup in this study.
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App Setcluster1 clusterN... ...

(2.1) Training
by PCLs

(1) clustering
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(108/27)
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(27/27)
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(3) Predicting

Case A
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Case B

(2.3) Training
by PCLs

(2.2) Training
by PCLs

Classification
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Classification
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Case B
results

Case C
results

Fig. 9: Experimental setup for assessing generalizability. For cases
B and C, the training dataset for each cluster’s classifier is randomly
selected from the cluster dataset and the experiments are repeated 10
times in order to reduce result variability.

• In step (1), we apply a clustering algorithm on our
dataset of Android apps, using the list of permissions
requested by each app as a criterion. To that end, we
consider the complete list of all permissions appearing
in the manifest file of any app in our dataset. Let v be
a vector representing the list of permission of a given
app a and P the set of all known permissions. For each
permission pi 2 P , if a has declared pi in its manifest,
then v[i] = “Y ES”, otherwise v[i] = “NO”. In our
experiments, we found 250 distinct permissions declared
in various apps of our dataset. Thus, for each app we
build a vector of size 250 indicating the use of certain
permissions. We perform different clustering scenarios by

6For the clustering process, we restrict to such apps that contain at least
one PCL.

varying the number of clusters that the algorithm should
output.

• In step (2), we consider the subset of apps in each of
the clusters obtained in step (1) to build a classification
model, i.e., a classifier. We have identified three cases
on how the training dataset can be sampled within the
cluster:

A. Each classifier is built using all apps within the relevant
cluster. In this case, classifiers are trained on sets
with characteristics potentially very different, because
clusters themselves have neither the same size, nor the
same malware/goodware ratio.

B. Each classifier is built using training data obtained by
sampling apps in the relevant cluster to guarantee the
same malware/goodware ratio for all classifiers.

C. Each classifier is built using training data obtained by
sampling apps of a given cluster in a way such that the
ratio between goodware is balanced and the samples
sizes are identical across clusters.

• In step (3), we evaluate the classifiers built in step (2) by
applying each for detecting malware on the whole app
set.

For this study, we use simpleKMeans as a clustering al-
gorithm in step (1). Figure 10 illustrates the distribution of
potential component leaks for different clusters obtained in
step (1). In this figure, we also differentiate between malware
and goodware across all 18 clusters. The number of leaks is
normalized to take into account the variety of cluster sizes: we
divided the number of leaks by the number of apps in each
cluster. From this histogram we see that the average number
of PCLs per app can be wildly different between clusters, i.e.
the patterns of PCL usage is not homogeneous across different
groups of apps.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18

#.
 o

f L
ea

ks

0
1

2
3

4

G_PPCL
G_PACL
G_PBCL
M_PPCL
M_PACL
M_PBCL

Fig. 10: Distribution of potential component leaks for different
clusters.

Experimental results of the machine learning detection tests
performed in step (3) are shown in Table I. We focus on
precision as a performance criterion for comparing classifiers.
For insights on recall, we provide the number of detected
malware using each classifier. We also display the performance



TABLE I: Assessment results of permission-based clustering. We performed four clustering experiments, varying the number of clusters
from 2 to 5.

clusters Case A Case B Case C
apps (M/G) precision detected malware apps (M/G) precision detected malware apps (M/G) precision detected malware

2 1442 / 2376 0.96 2858 108 / 27 0.67 2743 27 / 27 0.78 2743
2343 / 446 0.74 3637 108 / 27 0.67 2555 27 / 27 0.81 2555

Baseline 3785 / 2822 0.95 3549 216 / 54 0.7 3515 54 / 54 0.82 2909

3
1116 / 2251 0.97 2780 108 / 27 0.65 2769 27 / 27 0.76 2769
1090 / 445 0.79 3311 108 / 27 0.67 2660 27 / 27 0.81 2660
1579 / 126 0.63 3697 108 / 27 0.62 2099 27 / 27 0.84 2099

Baseline 3785 / 2822 0.95 3549 324 / 81 0.7 3553 81 / 81 0.82 2996

4

492 / 37 0.6 3551 108 / 27 0.66 1671 27 / 27 0.81 1671
1422 / 546 0.79 3564 108 / 27 0.66 2621 27 / 27 0.77 2621
915 / 67 0.64 3569 108 / 27 0.67 2084 27 / 27 0.8 2084

956 / 2172 0.97 2733 108 / 27 0.66 2730 27 / 27 0.77 2730
Baseline 3785 / 2822 0.95 3549 432 / 108 0.71 3574 108 / 108 0.84 2862

5

477 / 27 0.59 3534 108 / 27 0.69 1611 27 / 27 0.8 1611
1348 / 495 0.79 3524 108 / 27 0.67 2764 27 / 27 0.77 2764
902 / 46 0.63 3639 108 / 27 0.71 2181 27 / 27 0.83 2181

886 / 2095 0.96 2699 108 / 27 0.65 2843 27 / 27 0.8 2843
172 / 159 0.7 2481 108 / 27 0.6 1757 27 / 27 0.54 1757

Baseline 3785 / 2822 0.95 3549 540 / 135 0.7 3636 135 / 135 0.81 2917

of a baseline experiment which consists in training on the
combination of all sample apps considered for each cluster
and testing on the whole dataset of apps. The experiments
are repeated 10 times when sampling of training dataset is
performed within a cluster.

Case A. The different clustering experiments reveal many
insights. In each of the experiments, at least one cluster yields
a classifier that provides not only a higher precision than
the baseline, but also a significantly higher precision than
classifiers built with other clusters.

These performance discrepancies suggest that different clus-
ters provide training material with different quality. However,
since the clusters are of different sizes, the differences may
simply be related to this aspect, instead of the quality of data.

Case B. With classifiers built with same-size training
datasets but drawn from different clusters, we note that dif-
ferent numbers of malicious apps are detected depending on
the cluster. In the experiments where the dataset is split into
five (5) clusters, we note that one specific cluster provides a
60% precision, which is 10 points lower than the baseline,
and recalls roughly 1,000 less malicious apps than some of its
counterpart clusters.

Case C. Finally, by considering balanced samples within
clusters, we build classifiers whose performance results differ
from one cluster to another. E.g., for the experiments where
the dataset is split into 5 clusters, the worst classifier yields a
precision which is 30 points below the precision of the best
classifier and of the baseline. These results confirm the finding
that all clusters do not equally contribute to the detection
ability of our feature set. Some clusters are constituted with
training data that yield a low-precision classifier, indicating
that those clusters contain goodware and malware that either
a) cannot be discriminated with this feature set or b) are not
representative, with regards to this feature set, to the whole
universe of apps. In either case, the performance differences
amongst clusters suggest that the performance of a malware
detector is highly linked to the quality of its training set.

Case A vs Case B vs Case C. The results in Table I also
provide insights on how the performance of a clusters relates
to the quantity of training datasets. Indeed, we note that for
Case A and Case B, although the baseline performances are
obtained with training data of various sizes they are similar
within each Case. In case B the precision of the baseline
experiment is 70% for 3 experiments and 71% for the fourth
clustering experiment. In Case C, it is between 81% and 84%.

We further note that in Case A, with the whole datasets, i.e.
largest and most diversified data, the baseline performance is
at his highest point with a precision of 95% and detecting 93%
(3549 / 3785) of malware. Case B however, despite its larger
training datasets than in Case C, shows worse performance
(70% vs ⇠80%).'

&
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RQ4:Compared to Baseline, Performance is higher
when some parts of the dataset are not used in

training. i. e. giving more training data does not
always result in better performance.

Some parts of the dataset are Noise—with regards
to this feature set—meaning that there exist groups

of apps this feature set performs poorly on.

VI. THREATS TO VALIDITY

We now describe some threats to validity that we have
identified in the course of this study.

A. Internal Validity

The size of training sets and the parameters we use (e.g.,
malware/goodware ratio) take different values that appear to be
unjustified since, as shown in [2], no survey has determined
the appropriate values for malware detection. However, our
results show the same trends of that shown in [2]. For example,
we conclude the same trend: the performance of the machine
learning-based malware detector decreases when there are
fewer malware than goodware in the training data set.



B. External Validity
The main threat to validity in this study is external validity,

we now introduce them in this section.
Datasets representativity. The size of the dataset used

in the present study is very small compared to the many
millions of Android applications in existence. Hence, it could
be argued that our dataset has specific characteristics, and that
our experiments would yield different results on other datasets.
To reduce this risk, our dataset was randomly drawn from a
larger dataset whose size is two orders of magnitude bigger.

Furthermore, we show in this paper that sets of apps with
specific traits do indeed yield different results. While having
a representative dataset is of the utmost importance when
claiming experimental results would replicate across various
other datasets (i.e., that all sets of apps would be handled
as successfully), it is not necessary in our case where we
show that not all sets of apps are handled as successfully by
a malware detection approach.

Deficiencies of Static Analysis. Like MUDFLOW, our fea-
ture set based on potential component leaks is also generated
by statically analyzing Android apps. Since we use the same
settings as MUDFLOW use (for FlowDroid), our results may
contain flows that are unfeasible, as well as miss flows that
are feasible. Because one goal of this study is to determine
whether PCLs are good features for malware detection, and
not to prove the presence or absence of flows, we chose to
trade a small amount of precision in favor of a significant
speed gain.

VII. RELATED WORK

In this paper, we have studied the distribution of potential
component leaks, and used this information to detect malicious
apps. This work is related to many existing techniques that
leverage static taint analysis to detect privacy leaks, to detect
malware or to perform empirical study on Android apps.

Information flow analysis. Information flow analysis has
been well studied in Android community to detect vulner-
abilities of Android apps. For instance, FlowDroid [7] per-
forms “context-, flow-, field-, object-sensitive and lifecycle-
aware static taint analysis for Android apps” to detect intra-
component sensitive data flows. Several other works have been
presented to detect inter-component information flows [18],
[20], [24], [37] and to support inter-app information flow
analysis [23]. For example, IccTA [24] leverages FlowDroid
to perform inter-component static taint analysis through instru-
menting Android apps, reducing an inter-component problem
to an intra-component problems. Other techniques dynamically
analyzes information flows of Android apps. For example,
TaintDroid [14], one of the most sophisticated dynamic taint
tracking system, uses a modified Dalvik virtual machine to
track flows of private data.

In this work, we investigate potential component leaks,
the component-based information flows, which are different
from the above approaches. Our results are generated by our
previous work, PCLeaks, which performs information flow
analysis through the known ICC vulnerabilities (e.g., Activity

Hijacking). CHEX [27] and ContentScope [39] are two other
tools that tackle potential component leaks, however CHEX
limits itself to only considering leaks related to Activity
hijacking while ContentScope only takes into account leaks
related to Content Provider.

Machine learning based malware detection. Recently,
Avdiienko et al. presented an approach [8] closely related
to ours. Both their approach and ours take sensitive data flows
as features for machine learning-based malware detection,
and both rely on FlowDroid to extract sensitive data flows.
However, instead of taking into account all intra-component
leaks, we focus on component-based privacy leaks, the so-
called potential component leaks. Besides, we take into ac-
count SharedPreferences in our study, which has not been
considered in Avdiienko et al. approach. Furthermore, we have
investigated the clustering impact of the training data set,
which at the moment is rarely investigated in the literature.
Allix et al. [2] empirically investigated the assessment of
machine learning-based malware detectors for Android apps
to measure the impact of datasets size and goodware/malware
ratio, and the importance of validation scenarios. Our work
is related in that we also measure the impact of several
parameters and we raise one more factor to take into account
when evaluating a malware detection approach: One specific
approach may perform well only on a subset of Android
applications.

Several other candidate features have been proposed to
classify Android malware by using machine learning. For
example, Peng et al. [34] apply probabilistic learning methods
to the permissions of apps to detect malware. Gascon et al. [16]
make use of embedded call graphs to build a malware detector.
Other approaches [1], [6], [10], [15], [38] that rely on static or
dynamic analysis also provide possible features for malware
detection. Those features, along with the features we studied
in this paper, could be combined to perform more accurate
malware detection.

Empirical study on Android apps. In this work, we have
empirically studied the distribution of potential component
leaks. Empirical study provides a way of gaining knowledge
quantitatively and qualitatively. Li et al. [24] presents an
empirical study on how Intent is used in Android apps,
showing that Intent is commonly used in Android apps.
Ruiz et al. [31] show the prevalence of multiple advertisement
libraries in Android apps. Liu et al. [26] studied on the safety
of storing non-shared data on public storage of Android.
Egele et al. [13] illustrate that 10,327 out of the 11,748 apps
they studied contain at least one mistake in their usage of
cryptographic APIs. Maji et al. [28] perform fuzz testing to
evaluate the robustness of Android ICC mechanism, showing
that exception handling is rarely used and that it is possible
to crash an app at runtime from an unprivileged user process.
Allix et al. [3] perform a forensic analysis of Android apps,
showing evidences that many Android malicious apps are
developed at an industrial scale.



VIII. CONCLUSION

In this study, we empirically investigated a new feature
set for Android malware detection. This new feature set is
based on potential component leaks (PCLs), which we define
as sensitive data-flows that involve Android inter-component
communications. We first showed that PCLs are common
in Android apps. Then, further investigation showed that
malicious apps contain significantly more PCLs than benign
apps. Finally, we successfully applied PCLs as features for
machine learning-based malware detection.

In this study, we also investigated the generalization of our
PCLs-based feature set. Our results show that the performance
of a malware detector is highly linked to the quality of its
training set, and not only to the quantity aspects of the training
set. In other words, providing more training data might well
be a dead-end, since as shown by our results, some approaches
seem to work well only for subsets of applications.

This study hence suggests a new direction to the commu-
nity of machine learning-based malware detection. Instead of
applying a feature set for all the apps in the wild, it could
be better to only apply it for an appropriate set of apps (e.g.,
those apps that are somehow belonging to a same family).
To that end, a new application could be first assigned to an
appropriate cluster, and then be classified using a feature set
specifically designed for that cluster.
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