
I know what leaked in your pocket: uncov-
ering privacy leaks on Android Apps with
Static Taint Analysis

Li Li University of Luxembourg / SnT / SERVAL, Luxembourg
Alexandre Bartel University of Luxembourg / SnT / SERVAL, Luxembourg
Jacques Klein University of Luxembourg / SnT / SERVAL, Luxembourg
Yves Le Traon University of Luxembourg / SnT / SERVAL, Luxembourg
Steven Arzt Darmstadt University of Technology / EC SPRIDE, Germany
Siegfried Rasthofer Darmstadt University of Technology / EC SPRIDE, Germany
Eric Bodden Darmstadt University of Technology / EC SPRIDE, Germany
Damien Octeau Pennsylvania State University / CSE, USA
Patrick McDaniel Pennsylvania State University / CSE, USA

29 April 2014

ISBN 978-2-87971-129-4

www.securityandtrust.lu

University of Luxembourg • Interdisciplinary Centre for Security, Reliability and Trust • 4, rue Alphonse Weicker • L-2721 Luxembourg-Kirchberg

I know what leaked in your pocket: uncovering privacy
leaks on Android Apps with Static Taint Analysis

Li Li, Alexandre Bartel,
Jacques Klein, Yves Le Traon

SnT
University of Luxembourg
firstName.lastName@uni.lu

Steven Arzt, Siegfried Rasthofer,
and Eric Bodden

EC SPRIDE
Technische Universität Darmstadt
firstName.lastName@ec-spride.de

Damien Octeau, Patrick McDaniel
Department of Computer Science and

Engineering
Pennsylvania State University
{octeau,mcdaniel}@cse.psu.edu

ABSTRACT
Android applications may leak privacy data carelessly or
maliciously. In this work we perform inter-component data-
flow analysis to detect privacy leaks between components
of Android applications. Unlike all current approaches, our
tool, called IccTA, propagates the context between the com-
ponents, which improves the precision of the analysis. IccTA
outperforms all other available tools by reaching a precision
of 95.0% and a recall of 82.6% on DroidBench. Our ap-
proach detects 147 inter-component based privacy leaks in
14 applications in a set of 3000 real-world applications with
a precision of 88.4%. With the help of ApkCombiner, our
approach is able to detect inter-app based privacy leaks.

1. INTRODUCTION
With the growing popularity of Android, thousands of ap-

plications (also called apps) emerge every day on the official
Android market (Google Play) as well as on some alterna-
tive markets. As of May 2013, 48 billion apps have been
installed from the Google Play store, and as of September
3, 2013, 1 billion Android devices have been activated [1].
Researchers have shown that Android apps frequently send
the user’s private data outside the device without the user’s
prior consent [29]. Those applications are said to leak pri-
vate data. Android applications are made of different com-
ponents; most of the privacy leaks are simple and operate
within a single component. More recently, cross-component
and also cross-app privacy leaks have been reported [26].
Analyzing components separately is not enough to detect
such leaks. Therefore, it is necessary to perform an inter-
component analysis of applications. Android app analysts
could leverage such a tool to identify malicious apps that
leak private data. For the tool to be useful, it has to be
highly precise and minimize the false positive rate when re-
porting applications leaking private data.

Privacy leaks. In this paper, we use a static taint analy-
sis technique to find privacy leaks, i.e., paths from sensitive
data, called sources, to statements sending the data out-

.

side the application or device, called sinks. A path may
be within a single component or cross multiple components
and/or applications.

State-of-the-art approaches using static analysis to detect
privacy leaks on Android apps mainly focus on detecting
intra-component sensitive data leaks. CHEX [18], for exam-
ple, uses static analysis to detect component hijacking vul-
nerabilities by tracking taints between sensitive sources and
sinks. DroidChecker [9] uses inter-procedural Control-Flow
Graph (CFG) searching and static taint checking to detect
exploitable data paths in an Android application. Flow-
Droid [4] also performs taint analysis within single com-
ponents of Android applications but with a better preci-
sion. In this paper, we not only focus on intra-component
leaks, but we also consider Inter-Component Communica-
tion (ICC) based privacy leaks, including Inter-Application
Communication (IAC) leaks.

Other approaches use dynamic tracking to find privacy
leaks. For instance, TaintDroid [12] leverages Android’s vir-
tualized execution environment to monitor Android apps at
runtime in which it tracks how application leaks private in-
formation. CopperDroid [20] dynamically observes interac-
tions between the Android components and the underlying
Linux system to reconstruct higher-level behavior.

A dynamic approach must send input data to the app
at runtime to trigger code execution. The input data may
be incomplete and thus not execute all parts of the code.
Furthermore, some code may only be executed if precise
conditions are met at runtime such as a data. In this paper,
we focus on static analysis to avoid these drawbacks. The
counterpart of static analysis is that it may yield an over-
approximation since it analyzes all code even the one that
could never be executed.

Static taint analysis for Android is difficult. Despite
the fact that Android applications are mainly programmed
in Java, off-the-shelf static taint analysis tools for Java do
not work on Android applications. The tools need to be
adapted mainly for three reasons. The first reason is that, as
already mentioned, Android applications are made of com-
ponents. Communications between components involve two
main artifacts: Intent Filter and Intent. An Intent Filter is
attached to a component and “filters” Intents that can reach
the component. An Intent is used to start a new component
by first dynamically creating an Intent instance, and then
by calling a specific method (e.g. startActivity, startService)
with the intent previously created as parameter. The intent
is used either explicitly by specifying the new component to

call, or implicitly by for instance only specifying the action1

to perform. The launch of a component is performed by the
Android system which “resolves” the matching between In-
tent and Intent Filter at runtime. This dynamic resolution
done by the Android system induces a discontinuity in the
control-flow of Android applications. This specificity makes
static taint analysis challenging by requiring pre-processing
of the code to resolve links between components.

The second reason is related to the user-centric nature
of Android applications, in which a user can interact a lot
through the touch screen. The management of user inputs
is mainly done by handling specific callback methods such
as the onClick method which is called when the user clicks
on a button. Static analysis requires a precise model that
stimulates users’ behavior.

The third and last reason is related to the lifecycle man-
agement of the components. There is no main method as
in a traditional java program. Instead, the Android system
switches between states of a component’s lifecycle by calling
callback methods such as onStart, onResume or onCreate.
However, these lifecycle methods are not directly connected
in the code. Modeling the Android system allows to connect
callback methods to the rest of the code.

Our Proposal. The above challenges will unavoidably
cause some discontinuities in the control-flow graph. To
overcome these issues, we present an Inter-component com-
munication Taint Analysis tool named IccTA2. IccTA allows
a sound and precise detection of ICC and IAC links. This
approach is generic and can be used for any data-flow analy-
sis. In this paper we focus on using IccTA to detect privacy
leaks.

IccTA is based on three software artifacts: Epicc-IccTA,
FlowDroid-IccTA and ApkCombiner.

Epicc-IccTA extends Epicc [19] which computes ICC links
between Android components. Epicc-IccTA leverages Epicc
to incrementally store the computed ICC links to a database
for conveniently analyzing a large set of apps. FlowDroid-
IccTA extends FlowDroid [4]. FlowDroid only finds privacy
leaks within single components of Android applications but
not between components.

FlowDroid-IccTA uses ICC links computed by Epicc to
improve FlowDroid. Based on these computed links, Flow-
Droid-IccTA modifies Android applications’ code to directly
connect components to enable data-flow analysis between
components. By doing this, we build a complete control-
flow graph of the whole Android application. This allows
propagating the context between Android components and
yielding a highly precise data-flow analysis. To the best
of our knowledge, this is the first approach that precisely
connects components for data-flow analysis.

Finally, ApkCombiner helps analyzing multiple Android
applications by combining multiple apps into one when there
exist data flows between these apps. This results in having a
complete control-flow graph of the combined apps. This al-
lows to propagate the context not only between components
of a single app but also between components of different
apps.

To verify our approach, we developed 26 apps containing
ICC based privacy leaks. We have added these applications
to DroidBench [2], an open test suite for evaluating the ef-

1Such as android.intent.action.VIEW or .CALL or .EDIT
2Our experimental results and IccTA itself are available at
https://sites.google.com/site/icctawebpage.

Table 1: The top 8 used ICC methods†

ICC Method Counts(#.) Used Apps(#.)
startActivity 55802 (61.44%) 2765 (92.2%)
startActivityForResult 11095 (12.21%) 1980 (66.0%)
query 6606 (7.27%) 1601 (53.4%)
startService 3942 (4.34%) 1077 (35.9%)
sendBroadcast 3472 (3.82%) 790 (26.3%)
insert 2100 (2.31%) 615 (20.5%)
bindService 1515 (1.67%) 644 (21.5%)
delete 1238 (1.36%) 350 (11.7%)
Other ICC Methods 5058 (5.57%) -
Total 90828 (100%) -
† Methods with higher counts are selected when overload
methods exist

fectiveness and accuracy of taint analysis tools specifically
for Android apps. The 26 apps cover the top 8 used ICC
methods illustrated in Table 1.

Contributions. To summarize, we present the following
original contributions in this paper:

• A novel methodology to resolve the ICC problem by
directly connecting the discontinuities of Android apps
at the code level.

• IccTA, a tool for inter-component data-flow analysis.

• An improved version of DroidBench with 26 new apps
to evaluate tools detecting ICC based privacy leaks.

• An empirical study to evaluate IccTA over an aug-
mented version of the DroidBench test suite (available
online3) and 3000 real-world Android applications.

2. BACKGROUND

2.1 Android ICC Methods
An Android application is made of basic units, called com-

ponents, described in a special file, called Manifest, stored
in the application. There are four types of components: a)
Activities that represent the user interface and are the visi-
ble part of Android applications; b) Services which execute
tasks in background; c) Broadcast Receivers that receive
messages from other components or the system, such as in-
coming calls or text messages; and d) Content Providers
which act as the standard interface to share structured data
between applications.

Some specific Android system methods are used to trig-
ger inter-component communication. We call them Inter-
Component Communication (ICC) methods. Those meth-
ods take as parameter a special kind of object, called In-
tent, which specifies the target component(s). We perform
a short study to compute the usage rate of ICC methods.
We analyzed 3000 Android applications randomly selected
from Google Play and other third party markets. Table 1
shows the top 8 most used ICC methods. The third col-
umn represents the number of apps using at least once the
corresponding ICC method. The most used ICC method is
startActivity, used to launch a new Activity component,
which accounts for 59.2% of the total detected ICC methods.

All ICC methods4 take at least one Intent in their pa-
rameters to specify the target component(s). There are two
3github.com/secure-software-engineering/DroidBench
4Except Content Provider related methods such as query
or insert

Activity1

Activity2

Application 1

Activity3

IF: Actionb

Activity4

IF: Actionb

Application 2

Activity5

IF: Actionc

Application 3

Explicit ICC
to Activity2

Implicit ICC
for actionb

Figure 1: Explicit and Implicit ICC between Components
of Android Applications.

ways to specify ICC method’s target components. The first
one is by explicitly specifying them by setting the name of
the target components through an Intent. The second one
is by implicitly specifying them by setting the action, cate-
gory and data fields of an Intent. In order to receive implicit
Intents, target components need to specify an Intent Filter
in their application’s manifest file. Note that Intents can
transfer data between components.

Again, we performed a short study on the 3000 apps to
compute the ratio between explicit and implicit Intents for
the startActivity ICC method. Among the 55,802 star-

tActivity method calls, 27978 use explicit intents and 27824
use implicit Intents.

Figure 1 represents three Android apps made of Activity
components. There is an explicit ICC from Activity1 to
Activity2 in Application 1. There are two implicit ICCs
from Activity2 to Activity3 in Application 1 and from
Activity2 to Activity4 between Application 1 and Ap-

plication 2. Note that the target components of implicit
ICC, Activity3 and Activity4, have an Intent Filter with
the same action and category value as the Intent used in
Activity2. Each time there is an ICC, there may be a flow
of data between components and potentially a privacy leak.

2.2 FlowDroid
FlowDroid [4] is a context-, flow-, field-, object-sensitive

and lifecycle-aware static taint analysis tool for Android ap-
plications. FlowDroid is based on Soot [16] and Heros [8].
The context-, flow-, field-, object-sensitives of FlowDroid are
guaranteed by the precise call-graph of Soot and the IFD-
S/IDE [21, 23] based data-flow analysis of Heros. A special
main method, which considers all combinations of lifecycles,
callbacks and entry points of Android components is gener-
ated to model data flows within the application. The sources
and sinks used by FlowDroid are provided by SuSi [3], also
an open sourced tool used to fully automatically classify and
categorize Android sources and sinks. FlowDroid achieves
93% recall and 86% precision when detecting data leaks on
DroidBench. FlowDroid has been mainly used on single
component. However, with slight modifications, FlowDroid
could also be used when multiple components are involved,
i.e., for ICC analyses. Indeed, it’s possible to use FlowDroid
to compute paths for all individual components and then
combines all those paths together, whatever there is a real

link or not between these components. A major drawback
is that this naive approach yields many false positives.

2.3 Epicc
Epicc [19] is a tool, also based on Soot and Heros, to iden-

tify ICC links. In other words it finds links from ICC meth-
ods to their target components. Epicc reduces the discovery
of ICC in Android to an instance of the Interprocedural Dis-
tributive Environment (IDE) problem [23]. It uses data flow
analysis to compute Intent values at every ICC method call
statements. Experiments show that Epicc identifies 93% of
all ICC links and finds ICC vulnerabilities with far fewer
false positives than the next best tool.

3. MOTIVATING EXAMPLE
This section motivates our approach and illustrates the

problem we solve through a concrete example. This example
is detailed in Listing 1, which presents code of Application
1 introduced in Figure 1. The app has three Activity compo-
nents represented by Activity1, Activity2 and Activity3
classes. It also features ButtonOnClickListener a listener
class used to handle button click events. Activity1 regis-
ters a button listener for the to2 button (lines 6-11) and
Activity2 registers one for the to3 button (line 15).

1 // TelephonyManager telMnger; (default)
2 // SmsManager sms; (default)
3 class Activity1 extends Activity {
4 void onCreate(Bundle state) {
5 Button to2 = (Button) findViewById(to2a);
6 to2.setOnClickListener(new OnClickListener (){
7 String id = telMnger.getDeviceId ();
8 Intent i = new

Intent(Activity1.this ,Activity2.class);
9 i.putExtra("sensitive", id);

10 Activity1.this.startActivity(i);
11 });}}
12 class Activity2 extends Activity {
13 void onCreate(Bundle state) {
14 Button to3 = (Button) findViewById(to3a);
15 to3.setOnClickListener(new

ButtonOnClickListener(this));
16 Intent i = getIntent ();
17 String s = i.getStringExtra("sensitive");
18 sms.sendTextMessage(number ,null ,s,null ,null);
19 }
20 void onActivityResult(int ,int ,Intent){
21 //log all the Extras of Intent
22 }}
23 class Activity3 extends Activity {
24 void onCreate(Bundle state) {
25 Intent i = getIntent ();
26 String s = i.getStringExtra("sensitive");
27 sms.sendTextMessage(number ,null ,s,null ,null);
28 }}
29 class ButtonOnClickListener extends

OnClickListener{
30 // Activity act; (construct)
31 void onClick(View view) {
32 String id = telMnger.getDeviceId ();
33 Intent i = new Intent ();
34 i.setAction("test.ACTION"); // Action b
35 i.putExtra("sensitive", id);
36 act.startActivityForResult(i, 1);
37 }}

Listing 1: A Motivating Example Code

When button to2 and to3 are clicked, the onClick method
is executed and the user interface will change to Activity2
and to Activity3, respectively. In both cases, an Intent

containing the device ID (lines 7 and 32), considered as sen-
sitive data, is sent between two components by first attach-

Source

s0 s1 s2 s3 s4
. . .

s11 s12

Sink

Tainted Path

Stmt Sequence

Figure 2: Representation of Statements, Source, Sink, State-
ment Sequence and Tainted Path.

ing the data to the intent with the putExtra method (lines
9, and 35) and then by invoking either startActivity or
startActivityForResult (lines 10 and 36). Note that List-
ing 1 exemplifies both the use of explicit and implicit intents.
At line 8, the intent is created by explicitly specifying the
target class (Activity2). At line 34, only the intent action
is specified with no explicit reference to the target.

In this example, sendTextMessage is directly executed
when Activity2 or Activity3 is loaded since onCreate is
the first method in the lifecycle of an Activity. It sends
the data retrieved from the Intent as a SMS to the speci-
fied phone number.

In this code, two privacy leaks occur: one when button
to2 is clicked, the other when button to3 is clicked. When
to2 is clicked, the device ID is transferred from Activity1
to Activity2 (line 10) and then Activity2 sends it outside
the application (line 18).

When to3 is clicked, the device ID is transferred (line
36) from Activity2 to Activity3

5. Actually, the device
ID (the source) is retrieved in class ButtonOnClickListener
instantiated by Activity2. Finally, Activity3 sends the
device ID outside the application (line 27).

The sensitive data leaks described above crosses two com-
ponents: they cannot directly be detected since there is no
real code connection between startActivity and onCre-

ate (lines 10 and 13) or between startActivityForResult

and onCreate (lines 36 and 24). Section 5 describes our
approach to connect components to analyze paths between
components and even between applications.

4. DEFINITIONS
In order to better describe our approach, some android

and taint analysis related concepts need to be defined.
Control-Flow Graph (CFG) We detect data leaks by ana-

lyzing control-flow graphs of Android applications. An ap-
plication CFG consists of a collection of method CFGs linked
together according to how they call one another.

Source Method. A source method returns data considered
as private from the user’s point of view into the application
code. For example, method getDeviceId (line 76) is a source
method returning the device ID.

Sink Method. A sink method sends data out of the appli-
cation. For example, method sendTextMessage (line 27) is
a sink method sending data to another phone using SMS.
We use sources and sinks computed for Android by the SuSi
tool [3].

5As illustrated in Figure 1, Activity3 has the appropriate
Intent Filter to catch the implicit Intent
6All the line numbers described in this section is referring
to Listing 1

ApkCombiner

Soot / Dexpler

Heros

Epicc-IccTA FlowDroid-IccTA

Figure 3: The architecture of IccTA

ICC Method. An ICC method is used to trigger commu-
nication between two components. For example, method
startActivity (line 10) is an ICC method which triggers
component communication from Activity1 to Activity2.

Tainted Stmt. A tainted statement contains at least one
tainted piece of data. For example, i.putExtra("sensitive
",id) (line 9) is a statement containing the tainted data id.

Tainted Stmt Sequence. A tainted stmt sequence is a flow-
sensitive sequence of tainted stmt. For instance statements
at line 9 and 10 form a tainted statement sequence.

Tainted Path. A tainted path is a tainted stmt sequence
where 1) More than one stmt exist in the tainted path; 2)
The first stmt contains a source method; 3) The last stmt
contains a sink method. Tainted Stmt, Tainted Stmt Se-
quence and Tainted Path are illustrated in Figure 2.

There are three types of tainted stmt paths in Android:
Intra-Component Communication, Inter-Component Com-
munication (ICC) and Inter-Application Communication
(IAC) based tainted paths.

Intra-Component Tainted Path. An intra-component
tainted path is a tainted path only happening within a com-
ponent. In our motivating example, there is no intra-com-
ponent tainted path. But if the startActivity call was
replaced with a call to sendTextMessage which sends the
device id out of the application, there would be an intra-
component tainted path (line 7-10).

ICC based Tainted Path. An ICC based tainted path is
a tainted path among two or more components, i.e., there
is at least one ICC method in the path. In our motivating
example, there is an ICC based tainted path from source
method getDeviceId in Activity1 to sink method send-

TextMessage in Activity2 through the startActivity ICC
method (line 10).

IAC based Tainted Path. An IAC based tainted path is a
tainted path between two or among more applications, i.e.,
it has at least one ICC method between two components of
different applications. There is no IAC based tainted path
in our motivating example. But if the Activity4 in Figure 1
sends the device id transferred from Activity2 out of the
application, then there is an IAC based tainted path from
Application 1 to Application 2.

Privacy Leaks. If a tainted path is detected, it means that
a privacy leak has been found. In other words, some private
data obtained from a source method can flow through the
tainted path to a sink method.

5. ICCTA
In this Section we describe IccTA, our tool to detect pri-

vacy leaks in Android applications. It uses static taint anal-
ysis to detect privacy leaks. The main challenge for this is to

Apk Jimple Tainted
Paths

Apk∗

ICC
Links

Apk1

Apk2

Jimple

Links
DB

Jimple
+ ICC
+ Lifecycle
+ Callback

Tainted
Paths

(1.1)

Soot

(1.2)
FlowDroid

Analysis

(2.1)
Apk-

Combiner

(2.2)

Soot (2.5)
FlowDroid-

IccTA

(2.6)
FlowDroid

Analysis
(2.4)

Epicc-IccTA
(2.3) Epicc

(2.3) Epicc

Figure 4: Overview of IccTA (down) and FlowDroid (up).

solve the discontinuities problem introduced by the Android
system.

We present the architecture of IccTA in Figure 3 where
new or modified component are surrounded by a dashed line.
IccTA is the combination of Epicc-IccTA and FlowDroid-
IccTA. Epicc-IccTA relies on Epicc to incrementally com-
pute ICC links from Android apps. Both FlowDroid and
Epicc are based on Soot [16] and Heros [8]. Soot is a frame-
work to analyze Java based applications. It uses the Dex-
pler [7] plugin to convert Android Dalvik byte code to Soot’s
internal representation called Jimple and relies on Spark [17]
to build accurate call graphs. Heros is a scalable implemen-
tation of IFDS [22] and IDE [23], two frameworks to perform
data flow analysis. Analyzing multiple applications is done
using ApkCombiner. It combines multiple apps to a single
one to ease the analysis of IccTA.

Figure 4 is a comparison between IccTA and FlowDroid.
FlowDroid (4 up) first converts the Android bytecode to
Jimple in step (1.1). Then, in step (1.2), it analyzes the
Jimple code to detect tainted paths in single Android com-
ponents.

IccTA (4 down) can analyze one or multiple Android ap-
plications. If more than one application is analyzed, it uses
ApkCombiner to merge the Android applications in a single
application in step (2.1). The Android application’s byte-
code is then converted to Jimple in step (2.2). In parallel,
Epicc-IccTA analyzes all the input applications (Apk1 and
Apk2 in the Figure) to generate ICC Links in step (2.3) and
stores the results to a database in step (2.4). IccTA uses ICC
links generated by Epicc-IccTA to connect Android compo-
nents in the Jimple code in step (2.5). Steps (2.2) and (2.6)
correspond to FlowDroid’s steps (1.1) and (1.2): the Jimple
code is updated to take into account lifecycles and callbacks
of components and the taint analysis is launched to generate
a list of tainted paths.

5.1 FlowDroid-IccTA: Reducing the ICC pro-
blem to an Intra-Component problem

Since there is no direct code connection between two An-
droid components, FlowDroid cannot detect ICC based pri-
vacy leaks with precision. In this section, we describe how
FlowDroid-IccTA reduces the ICC problem to an intra-
component problem on which FlowDroid can perform an
highly precise data-flow analysis. Our approach instruments
the Jimple code of Android applications to connect compo-
nents directly in the code.

As mentioned in the introduction, there are three types
of discontinuities in Android: (1) ICC methods, (2) life-
cycle methods and (3) callback methods. We first describe

// modifications of Activity1

Activity1.this.startActivity(i);

IpcSC.redirect0(i);
(A)

// creation of a helper class

class IpcSC {

static void redirect0(Intent i) {

Activity2 a2 = new Activity2(i);

a2.dummyMain ();

}

}

(B)

// modifications in Activity2

public Activity2(Intent i) {

this.intent_for_ipc = i;

}

public Intent getIntent () {

return this.intent_for_ipc;

}

public void dummyMain () {

// lifecycle and callbacks

// are called here

}

(C)

Figure 5: Code Modifications to Handle ICC Communica-
tion between Activity1 and Activity2. The startActivity

ICC method is replaced (A) by a call to code that instan-
tiates and calls the “main” method of Activity2 (B). The
target component class is updated to handle Intent objects
directly, by modeling the Android system behavior (C).

how FlowDroid-IccTA tackles ICC methods in Section 5.1.1.
Then, we detail how FlowDroid-IccTA resolves lifecycle and
callback methods in Section 5.1.2. Finally, using our moti-
vating example of Listing 1, we illustrate the code instru-
mentation process in Section 5.1.3.

5.1.1 ICC Methods
As shown in Figure 4, the ICC problem is solved at step

2.5. This is where the Jimple code is updated by FlowDroid-
IccTA to connect components. This code modification is
required for all ICC methods (listed in Table 1). We de-
tail these modifications for the two most used ICC methods:
startActivity and startActivityForResult. We handle
ICC methods for Services and Broadcast Receivers in a sim-
ilar way.

StartActivity. Figure 5 shows the code transforma-
tion done by FlowDroid-IccTA for the ICC link between
Activity1 and Activity2 of our motivating example.
FlowDroid-IccTA first creates a helper class named IpcSC

(B in Figure 5) which acts as a bridge connecting the source
and destination components. Then, the startActivity ICC
method is removed and replaced by a statement calling the
generated helper method (redirect0) (A).

In (C), FlowDroid-IccTA generates a constructor method
taking an Intent as parameter, a dummyMain method to call
all related methods of the component (i.e., lifecycle and call-
back methods) and overrides the getIntent method. An
Intent is transferred by the Android system from the caller
component to the callee component. We model the behavior
of the Android system by explicitly transferring the Intent
to the destination component using a customized construc-
tor method, Activity2(Intent i), which takes an Intent

as its parameter and stores the Intent to a newly generated

field intent_for_ipc. The original getIntent method asks
the Android system for the incoming Intent object. The new
getIntent method models the Android system behavior by
returning the Intent object given as parameter to the new
constructor method.

The helper method redirect0 constructs an object of
type Activity2 (the target component) and initializes the
new object with the Intent given as parameter to the helper
method. Then, it calls the dummyMain method of Activity2.

To resolve the target component, i.e., to automatically
infer what is the type that has to be used in the method
redirect0 (in our example, to infer Activity2), Flowdroid-
IccTA uses the ICC links computed by Epicc-IccTA. Epicc-
IccTA resolve the target component not only for explicit
intents, but also for implicit intents. Therefore, there is no
difference for Flowdroid-IccTA to handle explicit or implicit
intent based ICCs.

StartActivityForResult. There are some special ICC
methods in Android, such as startActivityForResult. A
component C1 can use this method to start a component
C2. Once C2 finishes running, C1 runs again with some
result data returned from C2. The control-flow mechanism
of startActivityForResult is shown in Figure 6. There
are two discontinuities: one from (1) to (2), similar to the
discontinuity of the startActivity method, and the other
from (3) to (4).

The startActivityForResult ICC method has a more
complex semantic compared to common ICC methods that
only trigger one-way communication between components
(e.g., startActivity). Figure 7 shows how the code is in-
strumented to handle the startActivityForResult method
in our motivating example. To stay consistent with common
ICC methods, we do not instrument the finish method of
Activity3 to call onActivityResult method. Instead, we
generate a field intent_for_ar to store the Intent which
will be transferred back to Activity2. The Intent that will
be transfered back is set by the setResult method. We
override the setResult method to store the value of Intent
to intent_for_ar. The helper method IpcSC.redirect0

does two modifications to link these two components di-
rectly. First, it calls the dummyMain method of destination
component. Then, it calls the onActivityResult method of
the source component.

Activity2 Entry Point

startActivityForResult

Activity2

onActivityresult

Android
System

Activity3 Entry Point

setResult

Activity3

finish

1

2

34

Figure 6: The control-flow mechanism of startActivity-

ForResult

5.1.2 Lifecycle and Callback Methods
One challenge when analyzing Android applications is to

tackle the callback methods and the lifecycle methods of
components. There is no direct call among those methods

act.startActivityForResult(i);

IpcSC.redirect0(act , i);(A)

void setResult(Intent i) {

this.intent_for_ar = i;

a2.dummyMain ();

}

public Intent getIntentFAR () {

return this.intent_for_ar;

}

(C)

class IpcSC {

static void redirect0(Activity a2,

Intent i) {

Activity3 a3 = new Activity3(i);

a3.dummyMain ();

Intent retI = a3.getIntentFAR ();

a2.onActivityResult(retI);

}

}

(B)

Figure 7: An Example about running FlowDroid-IccTA to
startActivityForResult ICC method. (A) represents the
modified code of ButtonOnClickListener and (C) the mod-
ified code of Activity3. (B) is the glue code connecting
ButtonOnClickListener and Activity3. Some method pa-
rameters are not represented to simplify the code.

in the code of applications since the Android system han-
dles lifecycles and callbacks. For callback methods, we need
to take care of not only the methods triggered by the User
Interface (UI) events (e.g., onClick) but also of callbacks
triggered by Java or the Android system (e.g., the onCreate

method). In Android, every component has its own lifecycle
methods. To solve this problem, IccTA generates a dummy-

Main method for each component in which we model all the
methods mentioned above so that our CFG based approach
is aware of them. Note that FlowDroid also generates a
dummyMain method, but it is generated for the whole app
instead of for each component like we do.

5.1.3 The CFG of instrumented motivating example
Figure 8 represents the CFG of the instrumented moti-

vating example presented in Listing 1. In the CFG, getDe-
viceId is a source method in the anonymous OnClickLis-

tener class (line 6) called by Activity1. Method send-

TextMessage is a sink in Activity2. There is an intra-
component tainted statement path from the source method
to sink method (represented by edges 1 to 12).

Figure 8 also shows that IccTA builds a precise cross-
component control-flow graph. Since we use an technique
instrumenting the code to build the CFG, the context of a
static analysis is kept between components. This enables Ic-
cTA to analyze data-flows between components and thereby
enables IccTA to have a better precision than existing ap-
proaches.

5.2 ApkCombiner: Reducing an IAC problem
to an ICC problem

In Android, Inter-Application Communication (IAC) is
similar to Inter-Component Communication (ICC). Indeed,
IAC also relies on component communication, except that
the source component and the destination component belong
to different applications. If we can connect applications, an
IAC Problem becomes a standard ICC Problem.

Analyzing Multiple Applications. As shown in Fig-
ure 4, FlowDroid can only analyse one application at a time.
Therefore, we develop a tool, ApkCombiner, to combine mul-
tiple apps into one. ApkCombiner combines all the parts of
Android apps including bytecodes, assets, manifest and all
the resources. Then, we use IccTA to analyze the combined
app to compute IAC based privacy leaks. As FlowDroid-
IccTA handles the combined application as a single applica-
tions, it only detects ICC based privacy leaks. To distinguish
ICC leaks from IAC leaks, IccTA checks if all statements of
the tainted path belong to the same application or not.

String id = telMnger.getDeviceId();

i.putExtra(”sensitive”, id);

ipcSC.redirect0(i);

return-site;

Activity2 a2 = new Activity2(i);

return-site;

a2.dummyMain();

return-site;

this.intent for ipc = i;

onCreate(null);

return-site;

return this.intent for ipc;

Intent i = getIntent();

return-site;

String s = i.getStringExtra(”sensitive”);

sendTextMessage(s);

normal edge call-to-start edge call-to-return edge exit-to-return edge

(1)

(2)

(6) (11)

(12)

(3)

(4)

(7)

(8)

(9)

(10)(5)

Figure 8: The control-flow graph of the instrumented motivating example

Reducing the Number of Combined Apps to An-
alyze. In practice, when increasing the number of appli-
cations to analyze, and if all those applications are com-
bined with ApkCombiner, the processing time and memory
requirement of FlowDroid-IccTA also grows. To solve this
problem, we need to decrease the number of Android apps
to combine. Our solution is to build an IAC graph, where a
node is an application and an edge a link, to represent the
dependencies between applications. The idea behind being
that if there is no link between two applications there is no
need to combine them.

The IAC graph is made up of small independent IAC
(sIAC) graphs (connected components). Given a sIAC graph,
ApkCombiner combines all the nodes (apps) in it into one
app, then IccTA extracts leaks from the resulting app. How-
ever, in some case, if a sIAC graph still contains a lot of
nodes. This will also limit our approach to be scalable. Our
solution is to limit the length (how many apps are involved)
of an IAC leak7. For example, If a sIAC graph contains 10
nodes (where Ai is connected to Ai+1, i ∈ {1, 9}) and the
length limitation is set to five. Then, the sIAC graph is
split into five sIACs (e.g., one sIAC is from A2 to A6) that
IccTA can analyze. The trade-off limitation length enables
our approach to become scalable.

Another good point of building an IAC graph is that new
applications can be added to the graph in an iterative and
incremental manner. When new apps are involved, we only
run them against Epicc-IccTA and add them to the existing
IAC graph. We do not need to run the previously computed
apps again when adding the new apps to the IAC graph.

In short, by building an IAC graph, the original set of
Android applications is split into multiple small sets that
IccTA can analyze.

6. EVALUATION
Our evaluation addresses the following research questions:

RQ1 How does IccTA compare to commercial taint-analysis
tools for Android and FlowDroid in terms of precision
and recall?

RQ2 Can IccTA find leaks in real-world applications and
how fast is it?

RQ3 How do IccTA compare to other academic ICC leak
detection approaches?

7In practice we have not seen a leak going through more
than 2 apps.

6.1 RQ1: IccTA vs FlowDroid and Commer-
cial Tool

We evaluate and compare IccTA with FlowDroid and IBM
AppScan Source 9.0 on DroidBench to test for ICC and IAC
leaks. Unfortunately, we were unable to compare IccTA to
other static analysis tools as their authors did not make
them available.

DroidBench. DroidBench [2] is a set of hand crafted An-
droid applications for which all leaks are known in advance.
The fact of knowing all leaks in the applications is called the
ground truth and is used to evaluate how well static and dy-
namic security tools find data leaks. DroidBench version 1.2
contains 64 different test cases with different privacy leaks.
However, all the leaks in DroidBench are intra-component
privacy leaks. Thus, we developed 26 apps and 23 test cases
to extend DroidBench with ICC and IAC leaks. A test case
is applied on one application to test for ICC and on two
applications to test for IAC. In total, 18 apps contain inter-
component privacy leaks and 6 apps contain inter-app pri-
vacy leaks. The new set of test cases covers each of the top
8 ICC methods in Table 1. Moreover, among the 26 new
apps, two of them do not contain any privacy leaks. If a
tool detects privacy leaks on these two apps, the detected
leaks are false alarms. Finally, for each test case application
we add an unreachable component containing a sink. These
unreachable components are used to flag tools that do not
properly construct links between components.

The 23 test cases are listed in the first column of Table 2.
IccTA. We run IccTA on all the 23 test cases. The results

are shown in Table 2. IccTA successfully passes 18 test cases,
with 17 test cases containing 19 privacy leaks and one test
case (startActivity5) with no leak.

Among the detected privacy leaks, three of them are IAC
based privacy leaks and the remaining ones are ICC based
privacy leaks. In the startActivity5 test case, the source
component uses an implicit intent with data type text/plain
to start another activity. However, no other activity in this
test case declares that it can receive an intent with data type
text/plain. That means there is no connection among the
components in startActivity5 test case. As IccTA takes
into consideration the data type of an intent it does not
report any privacy leak for this test case.

The startActivity4 test case does not contain any leaks.
However, IccTA does report a false warning. The reason is
that the source component uses an implicit intent with an
URI to start another activity. Since IccTA relies on Epicc

which does over-approximate URIs links, it reports a false
leak.

The current version does not take into account Content

Providers. This is why IccTA misses leaks for the insert1,
delete1, update1, and query1 test cases. All the four test
cases are related to Content Provider.

FlowDroid. FlowDroid has been evaluated on the first
version of DroidBench in [4]. In table 2, we present the re-
sults of FlowDroid on the new 23 test cases. As already
explained, FlowDroid has been initially proposed to detect
leak in single Android component. However, we can use
FlowDroid in a way that it computes paths for all individ-
ual components and then combines all those paths together
(whatever there is a real link or not). As a result, we expect
that FlowDroid detects most of the leaks but yields several
false positives. Results of Table 2 confirm this expectation:
FlowDroid has a high recall (69.6%) and a low precision
(23.9%). FlowDroid misses three more leaks than IccTA in
bindService{2,3,4}. After investigation, we discover that
FlowDroid does not consider some callback methods for ser-
vice components.

AppScan. AppScan Source 9.0 requires a lot of man-
ual initialization work since it has no default sources/sinks
configuration file and is unable to analyze Android applica-
tions without specifying the entry points of every compo-
nents. We define the getDeviceId and log methods, that
we always use in DroidBench for ICC and IAC leaks, as
source and sink, respectively. We also add all components’
entry point methods (such as onCreate for activities) as call-
back methods so AppScan knows where to start the analysis.
AppScan is natively unable to detect inter-component data-
flows and only detects intra-component flows. AppScan has
the same drawbacks as FlowDroid and should have a high
recall and low precision on DroidBench. We use an addi-
tional script to combine the flows between components. As
expected AppScan’s recall is high (56.5%) and its precision
low (21.0%). Compared to FlowDroid, AppScan does worse.
Indeed, AppScan does not correctly handle startActivi-

tyForResult and thus misses leaks going through methods
receiving results from the called activities in startForRe-

sult{2,3,4}.
Conclusion. IccTA outperforms both the commercial

taint-analysis tool AppScan 9.0 and FlowDroid in terms of
precision and recall.

6.2 RQ2: IccTA and Real-World Apps
We run the experiments on a Core i7 CPU running a Java

VM with 8 Gb of heap. To evaluate our approach, we use
IccTA to analyze 3000 Android apps downloaded from the
Google Play market as well as some third-party markets
(e.g., wandoujia). IccTA process 3000 apps in about 100
hours. IccTA does not detect any leak for 2575 (85.83%)
applications. IccTA reports 425 applications containing pri-
vacy leaks. Among the 425 apps, 411 apps only contain
intra-component leaks and 14 apps contain at least one ICC
leak. From those 14 apps, 13 contain both intra-component
leaks and ICC leaks. IccTA detects 6989 IAC links. Among
those IccTA detects one IAC leak. This result indicates that
components do communicate and share data, but it is rare
that an inter-application leak occurs.

For intra-app leaks, IccTA detects 5986 leaks in the 425
apps. Among the detected leaks, 147 (2.5%) are ICC privacy
leaks. We manually check the 147 reported ICC leaks and

Table 2: DroidBench test results
? = correct warning, ? = false warning, = missed leak

multiple circles in one row: multiple leaks expected
all-empty row: no leaks expected, none reported
† C/A: # of Components / # of Applications

Test Case (C/A)† FlowDroid AppScan IccTA

Inter-Component Communication
startActivity1 (3/1) ? ? ? ? ?

startActivity2 (4/1) ? (4 ?) ? (4 ?) ?

startActivity3 (6/1) ? (32 ?) ? (32 ?) ?

startActivity4 (3/1) ? ? ? ? ?
startActivity5 (3/1) ? ? ? ?
startForResult1 (3/1) ? ? ?

startForResult2 (3/1) ? ?

startForResult3 (3/1) ? ? ?

startForResult4 (3/1) ? ? ? ? ? ?

startService1 (3/1) ? ? ? ? ?

startService2 (3/1) ? ? ? ? ?

bindService1 (3/1) ? ? ? ? ?

bindService2 (3/1) ?

bindService3 (3/1) ?

bindService4 (3/1) ? ? ? ? ? ?

sendBroadcast1 (3/1) ? ? ? ? ?

insert1 (3/1)
delete1 (3/1)
update1 (3/1)
query1 (3/1)

Inter-App Communication
startActivity1 (4/2) ? ? ? ? ?

startService1 (4/2) ? ? ? ? ?

sendBroadcast1 (4/2) ? ? ? ? ?

Sum, Precision, Recall and F1
? , higher is better 16 13 19
? , lower is better 51 49 1

, lower is better 7 10 4
Precision ? /(? + ?) 23.9% 21.0% 95.0%
Recall ? /(? +) 69.6% 56.5% 82.6%
F1 2 ? /(2 ? + ? +) 0.36 0.31 0.88

found out that 17 (11.6%) are false positives. In other words,
IccTA achieves a precision of 88.4% on real-word apps. The
false positives comes from Epicc that generates false posi-
tives for links between components.

We summarize the frequently used source methods and
sink types (Java classes) in Table 3 from the 425 apps having
at least one leak. Note that we only count such source and
sink methods that appear in the detected leaks. The most
used source method is openConnection and it is used 601
times in 169 apps. The most used sink types is Log and it
is used 2755 times in 261 apps. The reason why we study
sink types instead of sink methods is that there are a lot of
sink methods in a same sink type. Take the Log sink type
as an example, there are eight sink methods which log the
private data to disk.

Let us describe in details three leaks, one for each type of
leak.

Intra-component leak: bz.prana.myphonelocator. I-
ccTA detects an intra-component privacy leak starting from
the getLongitude source method in method onLocation-

Changed of class .SMSReceiver$MyLocationListener8. The
location is sent out of the app through SMS by the send-

TextMessage sink method in method smsReply of class .SM-
SReceiver. The app is designed to send the location outside

8The package name is omitted when the class name starts
with the package name

Table 3: The top 5 used source methods and sink types
Method/Type Counts(#.) Detail

Source Methods
openConnection 601 http connection
getLongitude 514 longitude
getLastKnownLocation 448 Location
getDeviceId 403 IMEI or ESN
getCountry 265 country code

Sink Types
Log 2755 error or warn
URL 821 execute
SharedPreferences 717 putInt, putString
Message 339 sendTextMessage
File 9 write(string)

the device through SMS. However, to distinguish the inten-
tion of detected privacy leaks is out of scope of this paper.
We take it as our further work.

ICC leak: com.dikkar.ifind. An ICC based privacy
leak is detected by IccTA on this application. In method
onLocationChanged of class .iFindPlaces, the getLongi-

tude source method is called and returns the location of
the Android phone. Then, the location is transferred to
another component named .PlaceDetail, where method b

of class j is called. In method b, a sink method Log.d

logs the location into disk with ServiceHandler tag name.
To verify the detected leaks, we developed an Android ap-
plication named LogParser. By giving the permission an-

droid.permission.READ_LOGS 9, LogParser reports all the
locations logged by Find Places.

IAC leak: com.bi.mutabaah.id to jp.benishouga.cl-

ipstore. An IAC leak is reported by IccTA between app
com.bi.mutabaah.id and app jp.benishouga.clipstore.
The source method findViewById is called in component
com.bi.mutabaah.id.activity.Statistic, where the data
of a TextView is obtained. Then the data is stored into an in-
tent with two extras named android.intent.extra.SUBJECT

and android.intent.extra.TEXT. After that, startActiv-
ity is used to send the data to app jp.benishouga.clipsto-

re, which extracts the data from the intent with the same ex-
tra names and writes all the data into a file named clip.txt

under path /data/data/jp.benishouga.clipstore/files.
Conclusion. IccTA finds leaks in real-world apps in a

reasonable amount of time. Nevertheless, IccTA only de-
tects a single IAC leak. This is an indication that inter-
application leaks are rare.

6.3 RQ3: Compare with Other academic Tools
We identify two academic tools able to deal with ICC

leaks: SCanDroid [13] and SEFA [26]. However, ScanDroid
fails to report any leaks and SEFA is not available. As a
result, we were not able to evaluate them on DroidBench.

To answer the research question, we focus and discuss
some key aspects of the various approaches. SCanDroid and
SEFA both use a path matching approach, which computes
paths for all individual components and then combines some
paths together, the decision of combining two paths or not is
given by a matching algorithm. A path matching approach
presents at least two main drawbacks.

First, even if the taint analysis is done for each compo-

9Starting from Android 4.1 it is no more granted to regular
apps, but it can still be granted to either vendor apps or
apps running on rooted phones.

Activity2

ButtonOnClickListener

startActivityForResult

Activity4

finish

Activity3

Figure 9: The problem of using path matching approach for
startActivityForResult

nent, the context of the analysis is lost when SCanDroid
and SEFA combine the taint paths, since the analysis is per-
formed before the combination of the paths. IccTA does not
present this problem because it connects the components at
the code level and then performs the analysis. Thus, it keeps
the data-flow between two components. Losing the context
decreases the precision of the tool. Indeed, an Intent can
carry data, i.e., it may contain a lot of extras key/value pairs
but only part of them are sensitive. A precise tool needs to
distinguish them to avoid false positive. For a path matching
approach, it is not easy to distinguish them because they do
not keep the state of Intent when matching two available
paths.

Second, some specific ICC methods such as startActiv-

ityForResult are difficult to handle with a matching al-
gorithm. It will become even worse when the special ICC
methods exist in a class which is invoked by multiple compo-
nents. Suppose a component Activity4 also uses the class
ButtonOnClickListener shown in Listing 1 to communicate
with other components. We present this scenario in Figure 9.
A path matching approach first finds a path from startAc-

tivityForResult to Activity3. After the finish method
of Activity3 is called, the onActivityResult method of
the source component is invoked by the Android system.
The problem is that it is difficult to know which compo-
nent (Activity2 or Activity4) is the source because they
both use the same class ButtonOnClickListener where the
Intent is created. In fact, It is very difficult to statically
resolve this problem since it is caused by the mechanism of
dynamic binding of Android (or Java). In our approach,
IccTA resolves this problem by explicitly calling the appro-
priate onActivityResult method (see Figures 6 and 7) of
the source component (Activity2 or Activity4) thanks to
the helper class IpcSC.

Conclusion. Even if we were not able to evaluate state-
of-the-art tools detecting ICC leaks (SCanDroid and SEFA),
IccTA seems to be more precise mainly because it keeps
the context between components unlike path matching ap-
proaches.

7. LIMITATIONS
In this section, we discuss the limitations of IccTA.
FlowDroid. IccTA is based on FlowDroid to perform

static taint analysis and thereby shares the same limitations
of FlowDroid. IccTA resolves reflective calls only if their
arguments are string constants. It is also oblivious to multi-
threading. We experienced that FlowDroid cannot prop-
erly analyze some apps (too much memory consumption or
hangs). We start by analyzing a set of 5000 and keep only
3000 apps that work with FlowDroid. Running IccTA on a
big server could significantly decrease the number of falling

analysis. Moreover, we are very confident that the next re-
lease of FlowDroid will resolve this problem.

Epicc. IccTA relies on Epicc to compute links between
components. Since Epicc does not handle URIs, it fails to
find ICC links for ContentProvider and yields false pos-
itives for the other three types of components when they
communicate using URIs. In practice the number of links is
huge due to the false positives. We check the links (intents
and intent filters) and only keep the ones not using URIs.

IccTA. At the moment IccTA does not handle some rarely
used ICC methods such as sendActivities or sendOrdered-
BroadcastAsUser. Data send between component with an
intent, is represented as key/value pairs. When a tainted
data is put in the intent, IccTA taints all key/value pairs.
This could result in false positives if a tainted data is put
in an intent and, in the receiving component, a non-tainted
data is retrieved from the intent and flows to a sink.

Native Code. Some Android application are packaged
with native code. IccTA only analyzes the dex file containing
the Dalvik bytecode.

8. RELATED WORK
As far as we know, IccTA is the first approach to seam-

lessly connect Android components through code instrumen-
tation in order to perform ICC based static taint analy-
sis. By using a code instrumentation technique, the state
of the context and data (e.g. an Intent) is transferred be-
tween components. To the best of our knowledge, there is
no other existing static approach to detect Android privacy
leaks tackling the ICC problem and keeping state between
components.

Static Analyses. There are several approaches using
static analysis to detect privacy leaks. PiOS [11] uses pro-
gram slicing and reachability analysis to detect the possible
privacy leaks. TAJ [25] uses the same taint analysis tech-
nique to identify privacy leaks in web applications. How-
ever, these approaches introduce a lot of false positives.
CHEX [18] is a tool to detect component hijacking vulner-
abilities in Android applications by tracking taints between
sensitive sources and externally accessible interfaces. How-
ever, it is limited to at most 1-object-sensitivity which leads
to imprecision in practice. LeakMiner and AndroidLeaks
state the ability to handle the Android Lifecycle including
callback methods, but the two tools are not context-sensitive
which precludes the precise analysis of many practical sce-
narios. FlowDroid [4] introduces a highly precise taint anal-
ysis approach with low false positive rate, but it does not
identify ICC based privacy leaks. IccTA performs an ICC
based static taint analysis by instrumenting the code of the
original app while keeping the precision high.

ComDroid [10] and Epicc [19] are two tools that tackle
ICC problem, but they mainly focus on ICC vulnerabilities
and do not taint data.

SCanDroid [13] is a tool for analyzing ICC based privacy
leaks. It prunes all call edges to Android OS methods and
conservatively assumes the base object, the parameters and
the return value to inherit taints from arguments. This ap-
proach is much less precise than our tool since we model all
the Android OS methods (except native methods) with our
dummy main method in the control-flow graph. Another
tool SEFA [26] also resolves the ICC problem. It performs
a system-wide data-flow analysis to detect possible vulner-
abilities (e.g., passive content leaks). Both SCanDroid and

SEFA use a matching approach to analyze inter-component
leaks. SCanDroid defines all the methods importing data
to an app as inflow methods and all the methods exporting
data from an app as outflow methods. Then, it matches the
inflow and the outflow methods to connect two components.
SEFA defines ICC methods as bridge-sinks to distinguish
with the sensitive-sinks. It uses the bridge-sinks to match
with other components and thereby connecting two compo-
nents. As we mentioned before, the matching approach has
some drawbacks compared to our instrumenting approach.
Therefore, even if we were not able to evaluate SCanDroid
and SEFA on DroidBench, it comes that IccTA is more pre-
cise by design.

AsDroid [15] and AppIntent [28] are another two tools
using static analysis to detect privacy leaks in Android apps.
Both of them try to analyze the intention of privacy leaks.
Analyzing the leaking intention is out of scope of this paper.
However, we think it is necessary to distinguish whether a
privacy leak is intended or not. We take this as our further
work.

Dynamic Analyses. Dynamic taint analyses techniques,
on the other hand, track sensitive data at runtime. Taint-
Droid [12] is one of the most sophisticated dynamic taint
tracking systems. It tracks flows of private data of third-
party apps. CopperDroid [20] is another dynamic testing
tool which observes interactions between the Android com-
ponents and the Linux system to reconstruct high-level be-
havior and uses some special stimulation techniques to ex-
ercise the app to find malicious activities. Several other sys-
tems, including AppFence [14], Aurasium [27], AppGuard [5]
and BetterPermission [6] try to mitigate the privacy leak
problem by dynamically monitoring the tested apps.

However, those dynamic approaches can be fooled by spe-
cial designed methods to circumvent security tracking [24].
Thus, dynamic tracking approaches may miss some data
leaks and yield an under-approximation. On the other hand,
static analysis approaches may yield an over-approximation
because all the application’s code is analyzed even code that
will never be executed at runtime. Both approaches are com-
plementary when analyzing Android applications for data
leaks.

9. CONCLUSION
This paper addresses the major challenge of performing

data-flow analysis across multiple components or multiple
applications. We have presented IccTA10, an ICC based
taint analysis tool able to perform such analysis. In partic-
ular, we demonstrate that IccTA can detect ICC based pri-
vacy leaks by providing a highly precise control-flow graph
through instrumentation of the code of applications. Unlike
previous approaches, IccTA enables a data-flow analysis be-
tween two components and adequately models the lifecycle
and callback methods to detect ICC based privacy leaks.
When running IccTA on DroidBench, it reaches a precision
of 95.0%. When running IccTA on three thousands applica-
tions randomly selected from the Google Play store as well
other third-party markets, it detects 130 inter-component
based privacy leaks in 12 applications. Other existing pri-
vacy detecting tools (e.g., AndroidLeaks) could benefit by
implementing our approach to perform ICC and IAC based
privacy leaks detection.

10Our experimental results and IccTA itself are available at
https://sites.google.com/site/icctawebpage.

10. REFERENCES
[1] Android (operating system), Feb. 2014. http://en.

wikipedia.org/wiki/Android (operating system).

[2] Droidbench–benchmarks, Feb. 2014. http://sseblog.ec-
spride.de/tools/droidbench/.

[3] S. Arzt, S. Rasthofer, and E. Bodden. Susi: A tool for
the fully automated classification and categorization of
android sources and sinks, 2013.

[4] S. Arzt, S. Rasthofer, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel. Flowdroid:
Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. In
Proceedings of the 35th annual ACM SIGPLAN
conference on Programming Language Design and
Implementation (PLDI 2014), 2014.

[5] M. Backes, S. Gerling, C. Hammer, M. Maffei, and
P. von Styp-Rekowsky. Appguard: enforcing user
requirements on android apps. In Proceedings of the
19th international conference on Tools and Algorithms
for the Construction and Analysis of Systems,
TACAS’13, pages 543–548, Berlin, Heidelberg, 2013.
Springer-Verlag.

[6] A. Bartel, J. Klein, M. Monperrus, K. Allix, and
Y. Le Traon. Improving privacy on android
smartphones through in-vivo bytecode
instrumentation. Technical report, May 2012.

[7] A. Bartel, J. Klein, M. Monperrus, and Y. Le Traon.
Dexpler: Converting Android Dalvik Bytecode to
Jimple for Static Analysis with Soot. In ACM Sigplan
International Workshop on the State Of The Art in
Java Program Analysis, 2012.

[8] E. Bodden. Inter-procedural data-flow analysis with
ifds/ide and soot. In Proceedings of the ACM
SIGPLAN International Workshop on State of the Art
in Java Program analysis, SOAP ’12, pages 3–8, 2012.

[9] P. P. F. Chan, L. C. K. Hui, and S. M. Yiu.
DroidChecker: analyzing android applications for
capability leak. In Proceedings of the fifth ACM
conference on Security and Privacy in Wireless and
Mobile Networks, WISEC ’12, pages 125–136, New
York, NY, USA, Apr. 2012. ACM.

[10] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner.
Analyzing inter-application communication in android.
In Proceedings of the 9th international conference on
Mobile systems, applications, and services, MobiSys
’11, pages 239–252, New York, NY, USA, 2011. ACM.

[11] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. Pios:
Detecting privacy leaks in ios applications. In The
Network and Distributed System Security Symposium
(NDSS 2011), 2011.

[12] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. Sheth. Taintdroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. In OSDI, volume 10,
pages 255–270, 2010.

[13] A. P. Fuchs, A. Chaudhuri, and J. S. Foster.
Scandroid: Automated security certification of android
applications. Manuscript, Univ. of Maryland,
http://www. cs. umd. edu/˜
avik/projects/scandroidascaa, 2009.

[14] P. Hornyack, S. Han, J. Jung, S. Schechter, and
D. Wetherall. These aren’t the droids you’re looking

for: retrofitting android to protect data from
imperious applications. In Proceedings of the 18th
ACM conference on Computer and communications
security, pages 639–652. ACM, 2011.

[15] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang.
AsDroid: Detecting stealthy behaviors in android
applications by user interface and program behavior
contradiction. In Proceedings of the IEEE/ACM
International Conference on Software Engineering
(ICSE), May 2014.

[16] P. Lam, E. Bodden, O. Lhoták, and L. Hendren. The
soot framework for java program analysis: a
retrospective. In Cetus Users and Compiler
Infastructure Workshop (CETUS 2011), 2011.

[17] O. Lhoták and L. Hendren. Scaling java points-to
analysis using spark. In G. Hedin, editor, Compiler
Construction, volume 2622 of LNCS, pages 153–169.
Springer Berlin Heidelberg, 2003.

[18] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex:
statically vetting android apps for component
hijacking vulnerabilities. In Proceedings of the 2012
ACM conference on Computer and communications
security, CCS ’12, pages 229–240, New York, NY,
USA, 2012. ACM.

[19] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden,
J. Klein, and Y. Le Traon. Effective inter-component
communication mapping in android with epicc: An
essential step towards holistic security analysis. In
Proceedings of the 22nd USENIX Security Symposium,
2013.

[20] A. Reina, A. Fattori, and L. Cavallaro. A system
call-centric analysis and stimulation technique to
automatically reconstruct android malware behaviors.
EuroSec, April, 2013.

[21] T. Reps, S. Horwitz, and M. Sagiv. Precise
interprocedural dataflow analysis via graph
reachability. In Proceedings of the 22nd ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 49–61. ACM, 1995.

[22] T. Reps, S. Horwitz, and M. Sagiv. Precise
interprocedural dataflow analysis via graph
reachability. In POPL ’95, pages 49–61, 1995.

[23] M. Sagiv, T. Reps, and S. Horwitz. Precise
interprocedural dataflow analysis with applications to
constant propagation. In TAPSOFT ’95, pages
131–170, 1996.

[24] G. Sarwar, O. Mehani, R. Boreli, and D. Kaafar. On
the effectiveness of dynamic taint analysis for
protecting against private information leaks on
android-based devices. In 10th International
Conference on Security and Cryptography
(SECRYPT), 2013.

[25] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and
O. Weisman. Taj: effective taint analysis of web
applications. In ACM Sigplan Notices, volume 44,
pages 87–97. ACM, 2009.

[26] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang. The
impact of vendor customizations on android security.
In Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security, pages
623–634. ACM, 2013.

[27] R. Xu, H. Säıdi, and R. Anderson. Aurasium:

practical policy enforcement for android applications.
In Proceedings of the 21st USENIX conference on
Security symposium, Security’12, pages 27–27,
Berkeley, CA, USA, 2012. USENIX Association.

[28] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and
X. S. Wang. Appintent: Analyzing sensitive data
transmission in android for privacy leakage detection.

In Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security, pages
1043–1054. ACM, 2013.

[29] Y. Zhou and X. Jiang. Dissecting android malware:
Characterization and evolution. In Security and
Privacy (SP), 2012 IEEE Symposium on, pages
95–109. IEEE, 2012.

